Aquatic plants bioremediation to groundwater contaminated by mines in karst areas
-
摘要: 选取黑藻(Hydrilla verticillata Royle)和水绵(Spirogyra communis,Hassall)作为研究对象,分析其对某铅锌矿尾矿库重金属废水的富集能力,综述重金属在黑藻和水绵体内的富集机制,探讨了利用黑藻和水绵进行岩溶矿山重金属污染水修复的应用前景。结果表明:黑藻和水绵体内的重金属绝对含量较高,并且植株长势良好,生物量大,说明这两种水生植物对重金属有避性或耐性。分析测试发现,在黑藻和水绵体内,重金属的富集系数较高,其中Pb最大,其后依次是As>Co>Mn>Cu>Cd>Zn>Ni>Cr,富集系数最少的是Hg,水绵体内的富集系数要大于黑藻。对比研究发现,这两类藻类体内的重金属含量和富集系数均高于非岩溶区。黑藻对重金属的富集机制主要有3种,即重金属作用下抗氧化酶活性增强、被动吸收和离子交换作用,而水绵特殊的分子生物结构可能是其吸附重金属的重要机制。黑藻和水绵在南方岩溶区广泛分布,利用黑藻和水绵修复重金属污染的岩溶水具有较好前景。Abstract: The karst regions in southwest China is an important producing area of nonferrous metals. Long-term extensive mining and waste residue accumulation have made the local environment seriously polluted by heavy metals. Many heavy metal elements enter the underground through surface runoffs and leaching, polluting groundwater aquifers, and pose a significant impact on the vulnerable karst environment. The leachate from the tailings reservoirs enters the groundwater system through karst pipelines and has a serious impact on the downstream ecological in a lead-zinc mine environment. In order to study the treatment technology of heavy metal pollution in karst groundwater and improve the quality of groundwater of this area, Hydrilla verticillata and Spirogyra communis grown in tailing reservoir leachate were selected as the sorbents of heavy metal. Hydrochemistry and enrichment factor analyses were conducted to examine the adsorption capacity of heavy metals of these two aquatic plants. Meanwhile, their heavy metal adsorption mechanism was explored and the feasibility of using these two aquatic plants to control karst groundwater pollution was discussed. Results show that, (1) The contents of heavy metals in these two aquatic plants lived in the mining area are high and the plants are well growing with large biomasses, suggesting these two kinds of aquatic plants have a certain avoidance or resistance to the heavy metals; (2)The bioconcentration factors (BCF) to elements in Hydrilla verticillata are relatively high, with value order as Pb > As > Co > Mn > Cu > Cd > Zn > Ni > Cr > Hg. The BCFs in Spirogyra communis are higher than those in Hydrilla verticillata but their value order is the same as that in Hydrilla verticillata. Although the contents of heavy metals do not reach the critical value of hyper-accumulators, the enrichment coefficients of Cu, Pb, Zn, Cd, Co, Ni, Mn and As in these two kinds of plants are much larger than 1, consistent with the hyper-accumulator enrichment characteristics, showing a co-enrichment feature; (3) Compared with non-karst areas, the content and BCF of heavy metals in these two aquatic plants in karst areas are much higher. Three main enrichment mechanisms of heavy metals in Hydrilla verticillata are suggested, which are enhancement of antioxidant enzyme activity under the stimulating of heavy metals, passive absorption, and ion exchange effect. For Spirogyra communis, its special molecular structure is important for its heavy metal adsorption. As the Hydrilla verticillata and Spirogyra communis are widely distributed in karst areas of southern China, using these two planes as the heavy metal remediation plants in karst polluted water will have a good prospect.
-
Key words:
- lead-zinc mine /
- karst groundwater /
- heavy metal pollution /
- Hydrilla verticillata /
- Spirogyra communis
-
[1] Goldscheider N. Karst groundwater vulnerability mapping: application of a new method in the Swabian Alb, Germany [J]. Hydrogeology Journal, 2005, 13(4): 555-564. [2] 袁道先. 西南岩溶区地下水环境告急 [N]. 科学时报, 2009:2-19. [3] 蒋忠诚. 广西岩溶及其生态环境领域近十年来的主要研究进展 [J]. 南方国土资源, 2004(11):19-22. [4] 郭维君, 陈学军, 崔晓艳. 广西泗顶铅锌矿区生态恢复与重建研究 [J].中国矿业, 2010, 19(5): 44-46. [5] 程峰, 苏夏征, 周洁军, 等. 岩溶区尾矿库渗漏机理与综合防治技术:以环江北山铅锌矿尾矿库为例 [J].中国岩溶, 2017, 36(2): 242-247. [6] 刁维萍, 倪吾钟, 倪天华, 等. 水体重金属污染的生态效应与防治对策 [J]. 广东微量元素科学, 2003, 10(3): 1-5. [7] 潘义宏, 王宏镔, 谷兆萍, 等. 大型水生植物对重金属的富集与转移 [J]. 生态学报, 2010, 30(23): 6430-6441. [8] 崔晓艳. 矿山生态恢复与环境治理研究:以广西融安泗顶铅锌矿区为例 [D]. 桂林:桂林理工大学, 2010. [9] 邓琴, 吴迪, 秦樊鑫, 等. 岩溶铅锌矿区土壤重金属污染特征 [J]. 中国岩溶, 2017, 36(2): 248-254. [10] 邓敬石, 张宗华, 陈家栋. 浅谈含重金属离子的铅锌矿尾矿废水危害及治理 [J]. 云南冶金, 2002, 31(2): 20-22. [11] 江用彬, 季宏兵. 藻类对重金属污染水体的生物修复 [J]. 地理科学进展, 2007, 26(1): 56-67. [12] Qi B C, Aldrich C. Biosorption of heavy metals from aqueous solutions with tobacco dust [J]. Bioresource Technology, 2008, 99(13): 5595-5601. [13] Baldantoni D, Alfani A, Di T P, et.al. Assessment of macro and microelement accumulation capability of two aquatic plants [J]. Environmental Pollution, 2004, 130(2): 149-156. [14] Panich-Pat T, Pokethitiyook P, Kruatrachue M, et al. Removal of Lead from Contaminated Soils by Typha Angustifolia [J]. Water, Air, & Soil Pollution, 2004, 155(1): 159-171. [15] 周守标, 王春景, 杨海军, 等. 菰和菖蒲对重金属的胁迫反应及其富集能力 [J]. 生态学报, 2007, 27(1): 281-287. [16] 广西壮族自治区水文工程地质队. 区域水文地质调查报告(大新幅)1978:40-59. [17] Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land [J]. Environmental Pollution, 2002, 118(3): 453-461. [18] Tomsett A B, Thurman D A. Molecular biology of metal tolerances of plants [J]. Plant Cell & Environment, 2010, 11(5): 383-394. [19] Wang S L, Liao W B, Yu F Q, et al. Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China [J]. Environmental Geology, 2009, 58(3): 471-476. [20] 黄永杰, 刘登义, 王友保, 等. 八种水生植物对重金属富集能力的比较研究 [J]. 生态学杂志, 2006, 25(5): 541-545. [21] Yan G, Viraraghavan T. Heavymetal removal from aqueous solution by fungus Mucor rouxii [J]. Water Research, 2003, 37(18): 4486-4496. [22] 李杰, 彭福利, 丁栋博, 等. 湘江藻类水华结构特征及对重金属的积累 [J]. 中国科学:生命科学, 2011, 41(8): 669-677. [23] Keskinkan O, Goksu M Z, Basibuyuk M, et al. Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum) [J]. Bioresource Technology, 2004, 92(2): 197-200. [24] 黄灵芝. 黑藻生物吸附剂吸附水体中重金属离子的研究 [D], 长沙:湖南大学, 2011. [25] Dixit S, Dhote S, Das R, et al. Heavy Metal Ions Uptake Properties of the Aquatic Weed Hydrilla verticillata: Modeling and Experimental Validation [J]. Hydro Nepal: Journal of Water, Energy and Environment, 2012, 1(8):19-23. [26] Lwj A, Dechoretz N, Bayer D, et al. Effect of three formulations on uptake and efficacy of copper in Hydrilla verticillata [J]. Weed Science, 1987, 35(2): 263-269. [27] McGrath S, Zhao F, Lombi E. Plant and rhizosphere processes involved in phytoremediation of metalcontaminated soils [J]. Plant and soil, 2001, 232(1): 207-214. [28] Baker A J, Whiting S N. In search of the holy grail-a further step in understanding metal hyperaccumulation? [J]. New Phytologist, 2002, 155(1): 1-4. [29] Yanqun Z, Yuan L, Schvartz C, et al. Accumulation of Pb, Cd, Cu and Zn in plants and hyperaccumulator choice in Lanping leadzinc mine area, China [J]. Environment International, 2004, 30(4): 567-576. [30] Mattina M I, Lannucci-Berger W, Musante C, et al. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil [J]. Environmental Pollution, 2003, 124(3): 375-378. [31] Salt D E, Blaylock M, Kumar N P, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants [J]. Nature biotechnology, 1995, 13(5): 468-474. [32] 徐勤松, 施国新, 周耀明, 等. 镉在黑藻叶细胞中的亚显微定位分布及毒害效应分析 [J]. 实验生物学报, 2004, 37(6): 461-468. [33] 徐勤松, 施国新, 王学, 等. 镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究 [J]. 水生生物学报, 2006, 30(1): 107-112. [34] 黄灵芝, 曾光明, 黄丹莲, 等. 黑藻对含重金属废水中锌离子的吸附性能 [J]. 材料保护, 2009, 42(3): 81-83. [35] Gupta V K, Shrivastava A K, Jain N. Biosorption of Chromium(VI) From Aqueous solutions by green algae spirogyra species [J]. Water Research, 2001, 35(17): 4079-4085. [36] 山鹰, 张玮, 王丽卿, 等. 六价铬对水绵生长的毒性效应 [J]. 生物学杂志, 2014, 31(1): 24-27. [37] Hashim M A, Chu K H. Biosorption of cadmium by brown, green, and red seaweeds [J]. Chemical Engineering Journal, 2004, 97(2-3): 249-255. [38] 薛培英, 颜昌宙, 曹英兰, 等. 铜、砷单一及复合污染对黑藻的毒性效应 [J]. 环境科学研究, 2011, 24(9): 1052-1058. [39] 施国新, 杜开和, 解凯彬, 等. 汞、镉污染对黑藻叶细胞伤害的超微结构研究 [J]. 植物学报, 2000, 42(4): 373-378. [40] 徐勤松, 施国新, 许丙军, 等. Cu、Zn在黑藻叶片中的富集及其毒理学分析 [J]. 水生生物学报, 2007, 31(1): 1-8. [41] 李巧云, 曾清如, 廖柏寒, 等. 沉水植物对沉积物中铜锌铅的富集 [J]. 水土保持学报, 2012, 26(5): 177-181. [42] Robinson B H, Mills T M, Petit D, et al. Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation [J]. Plant and soil, 2000, 227(1): 301-306. [43] Van T K, Wheeler G S, Center T D. Competition between Hydrilla verticillata and Vallisneria americana as influenced by soil fertility [J]. Aquatic Botany, 1999, 62(4): 225-233. [44] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms [J]. Earth-Science Reviews, 2010, 99(3): 162-172. [45] 胡刚, 王培, 曹建华, 等. 黑藻对岩溶水中DIC的利用及其生长的响应 [J]. 环境科学与技术, 2016, 39(5): 34-37. [46] 李兆波, 李伟, 顾舒平, 等. 低浓度CO2对水车前和黑藻光合特性的影响 [J]. 植物科学学报, 2011, 29(2): 226-233. [47] 曾振宇, 晏浩, 孙海龙, 等. 云南白水台钙华池出入口水化学和δ13CDIC昼夜变化的影响因素及水生光合作用影响比例的计算 [J]. 中国岩溶, 2016, 35(6): 605-613. [48] 李强, 靳振江. 岩溶生物地球化学研究的进展与问题 [J]. 中国岩溶, 2016, 35(4): 349-356. [49] 闵海丽, 蔡三娟, 徐勤松, 等. 外源钙对黑藻抗镉胁迫能力的影响 [J]. 生态学报, 2012, 32(1): 256-264. [50] 雷国元, 马军. 利用水绵(Spirogyra)深度处理生活污水强化除磷及其机制的探讨[J]. 环境科学, 2009, 30(4): 1066-1072. [51] 刘红玉, 曾光明, 鲁双庆, 等. 水绵在测试受污染废水的毒性中的应用及其测试方法: 中国,CN200410047131.1 [P]. 20050907.
点击查看大图
计量
- 文章访问数: 1809
- HTML浏览量: 316
- PDF下载量: 1134
- 被引次数: 0