• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶塌陷发育机理模式研究

姜伏伟

姜伏伟. 岩溶塌陷发育机理模式研究[J]. 中国岩溶, 2017, 36(6): 759-763. doi: 10.11932/karst2017y37
引用本文: 姜伏伟. 岩溶塌陷发育机理模式研究[J]. 中国岩溶, 2017, 36(6): 759-763. doi: 10.11932/karst2017y37
JIANG Fuwei. Study on the developing model of karst collapse[J]. CARSOLOGICA SINICA, 2017, 36(6): 759-763. doi: 10.11932/karst2017y37
Citation: JIANG Fuwei. Study on the developing model of karst collapse[J]. CARSOLOGICA SINICA, 2017, 36(6): 759-763. doi: 10.11932/karst2017y37

岩溶塌陷发育机理模式研究

doi: 10.11932/karst2017y37
基金项目: 贵州省科技厅科技支撑计划社发公关领域项目(黔科合[2016]支撑2846);贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]226);中国地质调查项目(DD20160254)

Study on the developing model of karst collapse

  • 摘要: 岩溶塌陷是我国岩溶区常见的地质灾害。目前,关于岩溶塌陷发育机理模式主要以力学分析为主。文章以岩溶塌陷过程为基础,探讨分析岩溶塌陷发育机理模式。依据地下水埋藏条件,土体分为包气带非饱和土体、潜水层饱和土体及承压水层承压性土体。根据“水-+土”相互作用,在包气带、潜水层和承压水层分别建立崩解作用、潜蚀作用和水力裂隙作用三种岩溶塌陷发育机理模式。

     

  • [1] 康彦仁,项式均,陈健,等.中国南方岩溶塌陷[M].南宁:广西科学出版社,1990:101-105.
    [2] 谭鉴益.坛状圆柱状岩溶塌陷预测模型与分析[J]. 水文地质工程地质,2001,28(4):19-22.
    [3] 贺可强,王滨,万继涛.枣庄岩溶塌陷形成机理与致塌模型的研究[J].岩土力学,2002,23(5):564-569,574.
    [4] 高宗军,马海会,王敏,等.岩溶地面塌陷预测模型初探[J].中国地质灾害防治学报,2009,20(4):66-71,85.
    [5] 王滨,李治广,董昕,等.岩溶塌陷的致塌力学模型研究:以泰安市东羊娄岩溶塌陷为例[J].自然灾害学报,2011,20(4):119-125.
    [6] 王建秀,杨立中,刘丹.覆盖型岩溶区土体塌陷典型数学模型的研究[J]. 中国地质灾害防治学报,1998,9(3):54-59.
    [7] 程星,黄润秋.岩溶塌陷的地质概化模型[J]. 水文地质工程地质,2002,29(6):30-34.
    [8] Whit W B. Geomorphology and Hydrology of Karst Terrains[M]. Oxford University Press: New York,1988:464.
    [9] Ford D C,Williams P F. Karst Geomorphology and Hydrology[M].Unwin Hyman: London,1989:601.
    [10] Beck B F. Environmental and engineering effects of sinkholes[J]. Environ Geol. Water Sci.,1988, 12:71-78.
    [11] Beck B F. Soil piping and sinkhole failures[M]. In: White WB (eds) Encyclopedia of caves. Elsevier, Nueva York, 2004: 523-528.
    [12] Sowers G F. Building on sinkholes[M]. ASCE, New York,1996:202.
    [13] Waltham T, Bell F, Culshaw M. Sinkholes and subsidence. Karst and cavernous rocks in engineering and construction[M]. Springer, Chichester,2005:28.
    [14] 赵显鹏,刘运清,周向农,等.岩溶地区路基土洞成因及处理措施[J].交通科技, 2004(5): 35-37.
    [15] 刘之葵, 梁金城,周健红.岩溶区土洞发育机制的分析[J].工程地质学报, 2004, 12(1): 45-49.
    [16] Crosta G, di Prisco C. On slope instability induced by seepage erosion[J]. Canadian Journal of Geotechnical Engineering,1999(36):1056-1073.
    [17] Chu-Agor M L. Empirical sediment transport function predicting seepage erosion undercutting for cohesive bank failure prediction[J]. Journal of Hydrology, 2009,377(1-2):155-164.
    [18] Hagerty D J. Piping/sapping erosion Basic considerations [J]. Journal of Hydraulic Engineering-ASCE, 1991, 117 (8):991-1008.
    [19] Rockwell D L. The influence of groundwater on surface flow erosion processes[J]. Earth Surface Processes and Landforms,2002, 27 (5):495-514.
    [20] Fox G A, Wilson G V, Simon A,et al. Measuring stream bank erosion due to ground water seepage: correlation to bank pore water pressure, precipitation, and stream stage[J]. Earth Surface Processes and Landforms,2007, 32 (10):1558-1573.
    [21] Wilson G V, Periketi R K, Fox G A,et al. Seepage erosion properties contributing to streambank failure[J]. Earth Surface Processes and Landforms,2007, 32 (3):447-459.
    [22] Darby S E, Thorne C R. Numerical simulation of widening and bed deformation of straight sand-bed rivers.I.Model development[J].Journal of Hydraulic Engineering-ASCE,1996(122):184-193.
    [23] Rinaldi M, Casagli N. Stability of streambanks in partially saturated soils and effects of negative pore water pressures: the Sieve River[J]. Geomorphology,1999(26):253-277.
    [24] Simon A, Curini A, Darby S E,et al. Streambank mechanics and the role of bank and near-bank processes in incised channels. In: Darby, S.E., Simon, A. (Eds.), Incised River Channels[J]. John Wiley and Sons, Chichester, UK, 1999:193-217.
    [25] Bouma J, Wsten J H M. Flow patterns during extended saturated flow in two, undisturbed swelling clay soils with different macrostructures[J]. Soil Sci. Sot. Am. J. 1979(43):16-22.
    [26] Germann P, Beven K.Water flow in soil macropores[J]. An experimental approach. J. Soil Sci., 1981(32): 1-13.
    [27] Graham J, Yuen K, Goh TB, et al. Hydraulic conductivity and pore fluid chemistry in artificially weathered plastic clay[J]. Engineering Geology,2001, 60(1-4):69-81.
    [28] Berilgen S A, Berilgen M M, Ozaydin I K. Compression and permeability relationships in high water content clays[J]. Applied Clay Science,2006, 31(3-4):249-261.
    [29] Fox P J, De Battista D J, Mast D G.Hydraulic performance of geosynthetic clay liners under gravel cover soils[J]. Geotextiles and Geomembranes,2000,18(2-4):179-201.
    [30] Zhang X C, Norton L D.Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils[J]. Journal of Hydrology,2002, 260(1-4):194-205.
    [31] Swartzendruber D. Modification of Darcy law for the flow of water in soils[J]. Soil Sci. 93: 22-29 (Soil Science Society of America Journal. 1961,69: 328-342).
    [32] Miller R J, Low P F. Threshold gradient for water flow in clay systems[J]. Soil Sci.Soc.Am. Proc.,1963,27(6):605- 609.
    [33] Klausner Y, Craft R. A capillary model for non -Darcy flow through porous media[J]. J. Rheol. 1966(10): 603-613.
    [34] Alabi O O, Popoola O I, Adegoke J A. Modification of fluid flow equation insaturated porous media[J]. Global J. Pure Appl. Sci., 2009(15):395-400.
    [35] Aydn A, Tecimen H B. Temporal soil erosion risk evaluation: a CORINE methodology application at Elmal dam watershed, Istanbul[J]. Environmental Earth Sciences, 2010, 61(7):1457-1465.
    [36] Liu H H, Birkholzer J. On the relationship between water flux and hydraulic gradient for unsaturated and saturated clay[J]. Journal of Hydrology, 2012(475): 242-247.
    [37] 姜伏伟,雷明堂,覃有强,等.土洞发育水动力判据及应用研究[J].工程地质学报,2014,22(S):77-82.
    [38] Fuwei Jiang. Experimental study on the critical triggering condition of soil failure in subsidence sinkholes[J]. Environ Earth Sci.,2015,74(1):693-701.
    [39] Fuwei Jiang. A new method to test the anti-permeability strength of clay failure under high water pressure[J]. Acta geotechnica slovenica,2015, 12(2):37-43.
  • 期刊类型引用(19)

    1. 廖有斌,刘宏,吴雨航. 黔南平塘深部岩溶塌陷调查与机理分析. 土工基础. 2025(01): 101-107 . 百度学术
    2. 石晓龙,闫淼,孙昊,郑小战. 广州市大坦沙钻探施工引发岩溶塌陷成因机理分析. 资源信息与工程. 2024(06): 24-30 . 百度学术
    3. 吴亚楠,杨云涛,焦玉国,刘志涛,王延岭,翟代廷,周绍智,魏凯,程凤. 山东省岩溶塌陷发育特征及诱因分析. 中国岩溶. 2023(01): 128-138+148 . 本站查看
    4. 王平,张彦文,俞栋华,程爱平,乔宇. 不同土层结构下覆盖型岩溶塌陷试验研究. 矿业研究与开发. 2023(10): 100-109 . 百度学术
    5. 李慧娟,陈梦源,梁川,涂婧. 武汉市长江一级阶地钻探施工诱发岩溶塌陷的形成机制分析. 资源环境与工程. 2022(02): 193-197 . 百度学术
    6. 钟瑶. 张湾村峡卡河岩溶塌陷数值模拟及成因. 湖北工业大学学报. 2022(05): 93-97 . 百度学术
    7. 王有智,杨宁,于林弘,吕凌峰. 烟台中桥岩溶塌陷发育特征及防治对策. 中国岩溶. 2022(06): 1007-1015 . 本站查看
    8. 理继红,喻永祥,李明,李伟,刘洪. 基于层次分析的苏州市岩溶塌陷易发性综合指数评价模型. 冶金管理. 2021(09): 85-87 . 百度学术
    9. 程素珍,张长敏,顾杰,郝春燕,廖海军. 普安店岩溶土洞塌陷形成机理及防控建议. 环境生态学. 2021(09): 45-48 . 百度学术
    10. 刘前进,黄旭娟,何文城. 赣南青塘盆地岩溶塌陷发育特征及防治建议. 江西科学. 2021(05): 844-850+888 . 百度学术
    11. 查甫生,刘从民,苏晶文,吴长贵,崔可锐. 铜陵市朝山地区岩溶塌陷形成条件与地面稳定性评价分析. 地质论评. 2020(01): 246-254 . 百度学术
    12. 周长松,邹胜章,朱丹尼,谢浩,申豪勇,王佳. 广昆铁路复线秀宁隧道大皮坡—中村段岩溶塌陷成因. 水文地质工程地质. 2019(03): 146-152+168 . 百度学术
    13. 李想,尹骥,卫佳琦,韦马季. 深覆盖岩溶地区高层建筑桩基优化实践. 中国岩溶. 2019(04): 591-599 . 本站查看
    14. 胡学强,吴贞术. 隧洞施工地下水环境保护措施探讨. 黑龙江水利科技. 2019(09): 73-74+175 . 百度学术
    15. 柳林,姜伏伟,张发旺,刘伟,栾崧. 岩溶地下工程施工抽水诱发黏土层地面塌陷机理及临界条件探讨. 中国岩溶. 2019(05): 752-758 . 本站查看
    16. 高宗军,鲁统民,王敏,冯建国,刘书江,王姝. 基于岩溶水动态的岩溶地面塌陷预测预报方法. 中国岩溶. 2019(05): 739-745 . 本站查看
    17. 姜伏伟,李亮,陈航. 贵阳永温中学岩溶塌陷发育临界条件研究. 中国岩溶. 2018(02): 294-299 . 本站查看
    18. 姜伏伟,张发旺,柳林,刘伟,李亮,陈航. 南宁地铁施工降水诱发岩溶塌陷条件及安全防控措施. 中国岩溶. 2018(03): 415-420 . 本站查看
    19. 曾朝辰,吴禄源,白海波. 陈四楼煤矿二_2煤底板控水构造发育规律研究. 煤炭技术. 2018(12): 103-106 . 百度学术

    其他类型引用(13)

  • 加载中
计量
  • 文章访问数:  2371
  • HTML浏览量:  826
  • PDF下载量:  1137
  • 被引次数: 32
出版历程
  • 发布日期:  2017-12-25

目录

    /

    返回文章
    返回