A quantitative analysis of tracing tests for the Maocun subterranean river basin of Guilin during rainy and dry seasons
-
摘要: 以典型岩溶地区广西桂林市毛村地下河流域为例,基于在线高分辨率监测进行雨季与旱季定量示踪试验,精细刻画流域内含水介质特征。根据示踪试验研究及毛村地下河系统内地下水的径流和分布特征,可将毛村地下河系统划分为社更岩、扁岩地下河系统,大冲里-背地坪系统和大岩前落水洞-毛村出口系统。这三个子系统分布于毛村流域的上游和下游,其示踪剂浓度历时曲线为陡升陡降的尖峰,地下管道相对单一,无较大岔道和溶潭发育。各段地下河水动力作用以对流作用为主,且水流一般呈现为紊流流态。雨季流速快、流量较大,平均运移时间短,示踪剂回收率比旱季高。流域中游含水介质相对均匀,无管道发育,地下水主要赋存于溶蚀裂隙。Abstract: This paper selected the typical underground river basin in Maocun village of Guilin, Guangxi for quantitative tracer tests in rainy and dry seasons based on online high-resolution monitoring to depict fine characteristics of groundwater aqueous media. According to the tracer test results and groundwater runoff and distribution characteristics, the Maocun underground river system is divided into Shegengyan and Bianyan underground river, Dachongli-Beidiping sub-system and Dayanqian sinkholes-Maocun outlet sub-system, which are distributed in upstream and downstream of the Maocun basin, respectively. The experimental tracer study shows that the breakthrough curves (BTC) are featured by steep upward and steep drop pinnacles, which suggest that the conduits are relatively simple, and have no large turnouts and karst tams developed. Each section of the underground river is generally turbulence which is dominated by convection; the flow velocity and flux in rainy seasons are larger, the average travel time is shorter, and the tracer recovery rates are higher than in dry seasons. The aqueous medium in the middle region is relatively uniform, and has no conduit developed. Groundwater is mainly stored in karst cracks.
-
[1] Tóth J. Groundwater as a geologic agent: an overview of the causes, processes, and manifestations[J]. Hydrogeology journal, 1999, 7(1): 1-14. [2] 郭纯青,刘景兰,王洪涛,等. 中国南方岩溶地下河系形成演变的链式规律[J]. 地球科学进展,2004,(S1):161-164. [3] 郭平战. 韩城矿区岩溶形成机理及其水文地质特征[J].地下水, 2015(5): 54-57. [4] 杨勇. 后寨河流域岩溶含水介质结构与地下径流研究[J].中国岩溶,2001,20(1):17-20. [5] 袁道先. 岩溶地区的地质环境和水文生态问题[J].南方国土资源,2003,(1):22-25. [6] Goldscheider N, Meiman J, Pronk M, et al. Tracer tests in karst hydrogeology and speleology[J]. International Journal of Speleology, 2008, 37(1):27-40. [7] Gouzie D, Berglund J, Mickus K L. The application of quantitative fluorescent dye tracing to evaluate karst hydrogeologic response to varying recharge conditions in an urban area[J]. Environmental Earth Sciences, 2015, 74(4): 3099-3111. [8] 杨平恒, 罗鉴银, 彭稳, 等. 在线技术在岩溶地下水示踪试验中的应用:以青木关地下河系统岩口落水洞至姜家泉段为例[J]. 中国岩溶, 2008, 27(3): 215-220. [9] 邹成杰. 岩溶管道水汇流理论研究[J]. 中国岩溶,1992,11(2):119-130. [10] 陈余道,程亚平,王恒,等. 岩溶地下河管道流和管道结构及参数的定量示踪:以桂林寨底地下河为例[J]. 水文地质工程地质,2013,40(5):11-15. [11] 徐尚全, 王鹏, 焦杰松, 等. 高精度在线示踪技术在岩溶地下水文调查中的应用[J]. 工程勘察, 2013,41(2): 40-44. [12] 何师意,章程,汪进良,等. 高精度地下水示踪技术及其应用:以毛村地下河流域为例[J]. 地球学报,2009,30(5): 673-678. [13] 王恒,陈余道. 广西桂林寨底地下河示踪研究[J]. 广东地质,2013,(1):183-187. [14] 孙继朝, 贾秀梅, 刘满杰, 等. 地下水示踪技术在水库渗漏勘察中的应用[J]. 现代地质, 2009,23(1):144-149. [15] 于正良,杨平恒, 谷海华, 等. 基于在线高分辨率示踪技术的岩溶泉污染来源及含水介质特征分析:以重庆黔江区鱼泉坎为例[J]. 中国岩溶, 2014, 33(4): 498-503. [16] 杨立铮,刘俊业. 试用示踪剂浓度-时间曲线分析岩溶管道的结构特征[J]. 成都理工大学学报(自然科学版),1979, (4): 46-51. [17] 张祯武. 岩溶地下水管流场类型与示踪曲线对应关系的研究[J].工程勘察, 1991, (1):32-37. [18] 杨平恒, 袁道先, 蓝家程,等. 基于在线高分辨率监测和定量计算的岩溶地下水示踪试验[J]. 西南大学学报:自然科学版, 2013, 35(2):103-108. [19] 易连兴, 卢海平, 赵良杰,等. 鱼泉地下河示踪试验及回收强度法管道结构分析[J]. 工程勘察, 2015, 43(2):46-51. [20] 李亮. 潮田河流域(岩溶)地质碳汇过程及通量估算研究[D]. 中国地质科学院,2013. [21] Lemke D, Schnegg P A, Schwientek M, et al. On-line fluorometry of multiple reactive and conservative tracers in streams[J]. Environmental Earth Sciences, 2013, 69(2):349-358. [22] Field M S. The QTRACER2 program for tracerbreakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems[M]. National Center for Environmental Assessment:Washington Office, Office of Research and Development, US Environmental Protection Agency, 2002.
点击查看大图
计量
- 文章访问数: 1777
- HTML浏览量: 719
- PDF下载量: 1293
- 被引次数: 0