Study on characteristics of chromium pollution in a typical chromium slag contaminated site
-
摘要: 选取西南岩溶区某傍河铬渣堆场为研究对象,对场地不同位置与深度的土壤及地下水样品进行采集,通过数理统计对Cr在场地中的空间分布特征以及场地对地下水的影响进行了分析。结果表明:土壤中总Cr浓度的水平分布具有差异性,表层土壤Cr浓度由上游到下游呈明显降低趋势,变化率为3.59;深层饱水带土壤中总Cr浓度分布受到地下水流场的影响,场地下游土壤铬浓度明显高于上游;杂填土垂向剖面的铬浓度分布不同于坡残积红黏土,杂填土中铬浓度随着深度的增加而增加,浓度与土壤深度的关系可用y=63.88ln(x)-75.221来表示;而在红黏土中剖面中,铬大量聚集在土壤表层,后随着深度的增加铬浓度逐渐降低,接近基岩面有升高趋势;场地地下水中Cr(Ⅵ)的浓度受深层土壤中总Cr浓度的影响,两者呈正相关。Abstract: In this paper, a chromium slag site near a river in a karst area in southwestern China was selected as the research object. The soil and groundwater samples were collected at different locations and depths of the site. The spatial distribution characteristics of chromium (as Cr) in the site and its influence on groundwater were analyzed by means of mathematical statistics. The results show that the horizontal distribution of total Cr concentration in soil is different, and the concentration of Cr in surface soil decreased significantly from upstream to downstream with a change rate of 3.59 .The distribution of total Cr in deep soil at saturated zone is affected by the flow field of groundwater, and the Cr concentration in downstream is subsequently higher than that in the upstream. The concentration of chromium in vertical profile of miscellaneous backfill soil is different from that of diluvial-residual red clay in the slopes, the Cr concentration in miscellaneous backfill soil increases with the increase of depth, and the relationship between it concentration and soil depth can be represented by . In the red clay section, most of the Cr is gathered on the surface, and then its concentration decreases with the increase of depth, which tends to increase near the bedrock surface. The concentration of Cr (VI) in groundwater samples is affected by total Cr concentration in the deep soil, and the two are positively correlated.
-
[1] Izbicki J A, Bullen T D, Martin P, et al. Delta chromium-53/52 isotopic composition of native and contaminated groundwater, mojave desert, USA[J]. Applied Geochemistry,2012, 27(4):841-853. [2] Altundogan S H. Cr(VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp[J]. Process Biochemistry,2005, 40(3-4):1443-1452. [3] Smith A H, STEINMAUS C M: Health effects of arsenic and chromium in drinking Water: recent human findings, Annual Review Of Public Health,2008,30:107-122. [4] Hori M, Shozugawa K, Matsuo M. Hexavalent chromium pollution caused by dumped chromium slag at the urban park in Tokyo[J]. Journal of Material Cycles and Waste Management,2015, 17(1):201-205. [5] Huang S H, Peng B, Yang Z H, et al. Spatial distribution of chromium in soils contaminated by chromium-containing slag[J]. Transactions of Nonferrous Metals Society of China,2009, 19(3):756-764. [6] Sankaran S, Rangarajan R, Kumar K K, et al. Geophysical and tracer studies to detect subsurface chromium contamination and suitable site for waste disposal in ranipet, vellore district, tamil Nadu, India[J]. Environmental Earth Sciences,2010, 60(4):757-764. [7] Bini C, Maleci L, Romanin A. The chromium issue in soils of the leather tannery district in Italy[J]. Journal of Geochemical Exploration,2008, 96(2-3):194-202. [8] 张厚坚, 王兴润, 陈春云, 等. 高原地区铬渣污染场地污染特性研究[J]. 环境工程学报,2010, 4 (4):915-918. [9] 荣伟英, 周启星. 铬渣堆放场地土壤的污染过程、影响因素及植物修复[J]. 生态学杂志,2010, 29,(3):598-604. [10] 刘玉强, 李丽, 王琪, 等. 典型铬渣污染场地的污染状况与综合整治对策[J]. 环境科学研究,2009, 22(2):248-253. [11] 雷艳梅, 刘晓, 桑博. 典型铬污染场地污染状况研究[J]. 中国环境管理干部学院学报,2016,26 (3):76-79. [12] 罗建峰, 曲东. 青海海北化工厂铬渣堆积场土壤铬污染状况研究[J]. 西北农业学报,2006, (6):244-247. [13] 曹泉, 王兴润. 铬渣污染场地污染状况研究与修复技术分析[J]. 环境工程学报,2009, 3(8):1493-1497. [14] Adrees M, Ali S, Iqbal M, et al. Mannitol alleviates chromium toxicity in wheat plants in relation to growth, yield, stimulation of anti-oxidative enzymes, oxidative stress and Cr uptake in sand and soil media[J]. Ecotoxicology And Environmental Safety,2015, 122:1-8. [15] 桂新安, 杨海真, 王少平, 等. 铬在土壤中的吸附解吸研究进展[J]. 土壤通报,2007(5):1007-1012. [16] 白利平, 王业耀. 铬在土壤及地下水中迁移转化研究综述[J]. 地质与资源,2009,18 (2):144-148. [17] CASTRO-RODRIGUEZ A, CARRO-PEREZ M E, ITURBEARGUELLES R, et al. Adsorption of hexavalent chromium in an industrial site contaminated with chromium in Mexico[J]. Environmental Earth Sciences,2015, 73(1):175-183. [18] 李景阳, 梁风, 朱立军, 等. 两种典型碳酸盐岩红土风化剖面的物理化学特征[J]. 中国岩溶,2005,25(1):30-36. [19] 杨斌. 土壤对铬吸附特性及影响外源铬吸附因素的研究[D]. 贵阳: 贵州大学,2006. [20] GONG C R, DONAHOE R J. An experimental study of heavy metal attenuation and mobility in sandy loam soils[J]. Applied Geochemistry, 1997, 12(3):243-254. [21] 于卫花, 张焕祯, 王智丽, 等. 土壤吸附铬的特性及影响因素研究进展[J]. 环境保护科学,2013, 39(2):38-41,46. [22] 蒙高磊, 刘之葵, 雷轶. 红黏土的研究现状和展望[J]. 路基工程,2014(4):7-11. [23] 杭小帅, 周健民, 王火焰, 等. 粘土矿物修复重金属污染土壤[J]. 环境工程学报,2007(9):113-120. [24] 赵利刚, 蒲生彦, 杨金艳, 等. 某铬渣堆场周边土壤地下水Cr6+污染特征研究[J]. 环境工程,2015, 33(2):117-121.
点击查看大图
计量
- 文章访问数: 1674
- HTML浏览量: 546
- PDF下载量: 514
- 被引次数: 0