Comparative of resident-information extraction accuracy from multi-scale remote sensing data in karst mountainous areas
-
摘要: 以贵州省典型喀斯特山区晴隆县为研究区,以分辨率分别为2.1 m的资源三号(ZY3)影像、10 m的哨兵二号(Sentinel-2)影像、16 m的高分一号(GF1)影像以及30 m的Landsat8影像为数据源,利用面向对象分类和人机交互相结合的方法提取研究区城市居民地、乡镇居民地和农村居民地,并将4种不同分辨率影像上提取的3种居民地信息与从0.5 m分辨率的普莱亚(Pleiades)影像通过目视解译且经实地核查得到的数据进行对比,计算出4种分辨率影像上3种居民地信息的提取精度,对提取结果进行精度对比分析。结果表明:(1)同一分辨率影像中,城镇居民地提取误差小于农村居民地;不同分辨率影像中,随影像分辨率大小的降低3种居民地中城市居民地的精度变化最小,为23.99%,农村居民地的数据精度变化最大,达到35.3%。(2)从2.1 m到30 m分辨率影像,居民地信息错分总误差快速增加,总误差比依次为:2.56%、15.58%、24.50%、32.72%,城市居民地错分误差比明显小于农村居民地,且3种居民地错分为其他地类面积最多的均是裸地;(3)随着影像分辨率大小的降低,居民地漏分总误差分别为2.86%,18.60% ,27.99%,37.49%,其中分散式的农村居民地识别更易受到周围环境的影响,漏分误差随影像分辨率大小降低而显著增加,4种分辨率影像中3种居民地信息漏分误差最小的均为水体,最大的是裸地和耕地。Abstract: Guizhou Province hosts a typical karst landform in China, where nearly 65% of the land is karst regions. It leads to the complexity, vulnerability and diversity of Guizhou’s ecological environment because of its unique mountainous plateau terrain and the existence of karst geological conditions. The spatial distribution of the karst mountainous areas is quite different from that of other plateaus mountainous areas, which seriously affects the survival and development of the mountainous residents. Therefore, studying the satellite images with suitable resolution in the karst areas to obtain the information of the residents is very significant. In this paper, the Qinglong county is selected as the study area. The county is under the jurisdiction of Qianxi’nan Prefecture, Guizhou Province. It is located in the middle of the Yunnan-Guizhou plateau and the west of the Miaoling mountains. The main karst forms include peak-cluster depression, sinkholes, dry gutters and karst caves in Qinglong. The author selected four different resolution images as the data source, which are Y3 image (2.1 m), sentinel-2 image(10 m), GF1 image(16 m) and Landsat8 image (30 m), respectively and extracted the residential area, township and rural regions of the study area using the object-oriented classification and human-computer interaction methods. Furthermore, the accuracy of the results that three kinds of residential information extracted from the four different resolution were compared with the geographical census data obtained from the 0.5 m resolution Pleiades image through visual interpretation and field verification. The results show that, (1) In the same resolution image, the extraction error of the urban residents is smaller than that of the rural residents. Among the different resolution images, the accuracy change of the resolution of urban residential areas is the smallest, which is 23.99%, whereas the accuracy change of the rural residential areas is the biggest, up to 35.3%; (2) The total commission errors of residential information increases rapidly from 2.1 m to 30 m resolution images, which are, in order, 2.56%, 15.58%,24.50%, 32.72%. The total omission errors in the urban residential areas are obviously smaller than that in the rural residential areas, and the most wrongly type divided into other classes in three residential areas is bare lands; (3) With the reduction of image resolution, the total omission errors of residential areas are 2.86%, 18.60%, 27.99%, 37.49%, respectively, among which non-central rural residential areas are more vulnerable to the environmental impact from their surroundings, and the total omission errors of residents increase significantly with the reduction of image resolution. The final results obtained are consistent with the conclusion that the spatial resolution of the satellite sensor is proportional to the spatial resolution of the satellite sensor.
-
Key words:
- karst /
- residential land /
- object-oriented classification /
- accuracy analysis
-
[1] Atkinson P M,Cuban P J.Choosing an appropriate spatial resolution for remote sensing Investigations [J].Photogrammetric Engineering and Remote Sensing,1997,63(12):1345-1351. [2] 闵婕, 杨庆媛. 岩溶山区乡村聚落的格局特征及类型分析:以重庆市巫山县为例[J].中国岩溶, 2014, 33(1):99-109. [3] 王发艳, 李阳兵. 红枫湖流域聚落空间格局特征及其影响因素分析[J]. 中国岩溶, 2014, 33(3):326-337. [4] 杨山. 发达地区城乡聚落形态的信息提取与分形研究:以无锡市为例[J].地理学报,2000, 55(6): 671-678. [5] 顾娟,陈军,张宏伟,等.基于遥感影像的居民地提取研究综述与展望[J].计算机工程与应用,2007,43(30): 1-4,10. [6] Henderson F M. An Analysis of Settlement Characterization in Central Europe Using SIR-B Radar Imagery [J]. Remote Sensing of Environment, 1995, 54(1): 61-70. [7] 周晓芳,周永章.贵州典型喀斯特地貌区农村聚落空间分布研究:以清镇红枫区、毕节鸭池区和关岭—贞丰花江区为例[J]. 中国岩溶, 2011, 30(1):78-85. [8] 郭晓娜, 苏维词, 李强,等. 基于 GIS 和 RS 的黔南喀斯特地区人居环境自然适应性评价[J]. 中国岩溶, 2016, 35(2):218-225. [9] 任扬航, 马明国, 张霞,等. 典型喀斯特石漠化地区植被动态监测与土地利用变化的影响分析[J]. 中国岩溶, 2016,35(5):550-556. [10] 杨存建,周成虎.TM影像的居民地信息提取方法研究[J].遥感学报,2000,4(2):146-150. [11] 吴宏安, 蒋建军, 周杰, 等. 基于影象融合的干旱区城镇居民地信息提取研究[J]. 地理科学, 2006,26(4):477-482. [12] 樊舒迪, 胡月明, 刘振华. 一种新的面向对象城市建筑物信息提取方法研究[J].华南师范大学学报 (自然科学版), 2015, 47(6): 91-97. [13] 熊平生, 袁道先, 谢世友. 我国南方岩溶山区石漠化基本问题研究进展[J]. 中国岩溶, 2010, 29(4):355-362. [14] 徐燕, 殷红梅. 贵州喀斯特地区旅游竞争力评价与对策研究[J]. 中国岩溶, 2009, 28(1):95-102. [15] 苏旺德, 史正涛, 刘钢. 基于RS和GIS的南汀河流域石漠化评价[J]. 中国岩溶, 2015,34(6):594-601. [16] 戴昌达,姜小光,唐伶俐.遥感图象应用处理与分析[M].北京:清华大学出版社,2004. [17] 陈明,周伟,袁涛.GF-1影像质量评价及矿区土地利用分类潜力研究[J].测绘科学技术学报, 2015, 32(5): 494-499. [18] 张森, 陈健飞,龚建周. 面向对象分类的决策树方法探讨:以Landsat-8OLI为例[J]. 测绘科学, 2016,41(6):1-8. [19] 孙孝军.公路、铁路施工测量的实用计算器程序[J].测绘通报,2006(7):26-29. [20] 周亦,张亚亚.利用eCognition进行高分一号卫星数据土地利用现状解译能力测试[J]. 测绘通报,2016(8):77-80,94. [21] 张红梅,吴基文,刘星,等.特征提取和决策树法土地利用遥感分类[J].测绘科学,2014,39(10):53-56. [22] 查勇,倪绍祥,杨山.一种利用TM图像自动提取城镇用地信息的有效方法[J].遥感学报,2003,7(1): 37-40. [23] 李雪冬, 杨广斌, 周越,等. 基于3S技术的岩溶地区城市景观生态安全评价:以贵阳市为例[J]. 中国岩溶, 2016, 35(3):340-348. [24] GAO Mengxu, WANG Juanle, BAI Zhongqiang. Object-oriented Method for Rural Residential Land Extraction in the Hilly Areas of Southern China Using RapidEye Data [J]. Journal of Resources and Ecology, 2016, 7(4): 291-300.
点击查看大图
计量
- 文章访问数: 1655
- HTML浏览量: 295
- PDF下载量: 755
- 被引次数: 0