Corrosion driving effects of three epilithic mosses in the Pudding karst area, Guizhou Province
-
摘要: 以普定严重石漠化区域石生细叶小羽藓Haplocladium microphyllum Hedw.、银叶真藓Bryum argenteum Hedw. 和美灰藓Eurohypnum leptothollum(C. Muell. ) Ando.为研究材料,运用模拟土柱实验装置收集植物淋出液并测定其电导率、pH值、CA活性、钙镁元素含量并对石灰岩试片溶蚀进行估算。结果表明:岩溶生态系统中不同植物的碳酸酐酶活性差异较大,其中细叶小羽藓的溶蚀效果最为显著,产生的碳汇量最大;CA活性最高为美灰藓,为272.99 U·g-1·FW;最小的为细叶小羽藓的CA活性较低,为38.31 U·g-1·FW。淋出液均检测到CA的存在,银叶真藓淋溶6 d的CA活性最高,随着时间的推移,3种植物CA总体表现出先略降,然后升高,最后趋于平稳的趋势;pH值呈上升趋势;电导率呈下降趋势;淋出液中Ca2+和Mg2+浓度随淋溶时间的延长浓度逐渐降低,一定时间后趋于动态的平衡;说明石生植物对石灰岩有明显的酶促溶蚀驱动作用,且溶蚀率与CA活性成正相关。Abstract: Bryophytes play an important role in forest ecosystems, which are irreplaceable to soil and water conservation and the improvement of the ecological environment. Due to the ecological environment deterioration of rocky desertification in Guizhou province, serious soil erosion problem have been caused, which seriously affect the production and living of the masses. So, it is necessary to strengthen the restoration and management of the ecological environment in the region. This work took three epilithic mosses, the H.microphyllum , B.argenteum, E.leptothollum, as research materials. Using the device of simulated soil column experiment, we collected leachate and measured the carbonic anhydrase (CA) activity, electrical conductivity, pH, the content of calcium and magnesium elements and estimated the effect to limestone specimens. The results show that there are some differences about carbonic anhydrase activity of these epilithic mosses. The E. leptothollum is highest which reaches to 272.99 U·g-1.FW, whereas the minimum is 38.31 U·g-1.FW in H.microphyllum. All leachate was detected the existence of CA activity, and the leachate of B.argenteum 6d enzyme solution has the highest activity. In all, the CA activity in the 3 kinds of plants shows a tendency to decrease slightly fisrt, then increases, and finally tends to be stable. Their pH values exhibit a rising trend while electrical conductivity has downturn. The concentrations of Ca2+ and Mg2+ gradually drop with the extension of leaching time, and then tend to dynamic equilibrium after a certain time, which shows that the lithophyte has a significant enzymatic driving effect on limestone and there is a positive correlation between the dissolution rate and CA activity. This work is of great academic significance to further understanding the dynamics of CA activity produced by the metabolism of stone bryophytes in karst areas and their erosion to limestone.
-
Key words:
- epilithic plants /
- carbonic anhydrase /
- leaching loss /
- karst driving
-
[1] ?王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学(D辑),1999,29(5):441-449. [2] 徐胜友,蒋忠诚.我国岩溶作用与犬气温室气体CO2源汇关系的初步估算[J].科学通报,1997,42(9):953-959. [3] 聂磊,萧洪东,侯雨佳,等.不同光照条件下石灰岩表面蓝藻生物岩溶侵蚀能力与生理活性研究[J].地学前缘,2012, 9(6):254-259. [4] 袁道先,蒋忠诚.IGCP379“岩溶作用与碳循环”在中国的研究进展[J].水文地质工程地质, 2000, (1):49-51. [5] Crowther J. A comparision of the rock table and water hardness methods for determining chemical erosion rates on karst surface[J].Annual Geomorphology,1983,27(1):55-64. [6] 袁道先.现代岩溶学和全球变化[J].地学前缘,1997,4(1):17-25. [7] Li W, Yu L J, Wu Y, et al. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase[J]. Bioresource Technology, 2007,98: 950-953. [8] 李为,余龙江,贺秋芳,等.微生物及其碳酸酐酶对岩溶土壤系统钙镁元素淋失的影响[J].中国岩溶,2004, 23(1):3-7. [9] Lian B, Yuan D X, Liu Z H. Effect of microbes on karstification in karst ecosystems[J]. Chinese Science Bulletin, 2011, 56(35):3743-3747. [10] Brownell P F, Bielig LM, Grof C P L. Increased carbonic anhydrase activity in leaves of sodium deficient C4 plants[J]. Australian Journal of Plant Physiology, 1991, 18: 589-592. [11] 刘再华.碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义[J].地球学报, 2001, 22(5): 477-480. [12] Xiao L, Hao J, Wang W, et al. The up regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+deficiency and the heterologously expressed enzyme promotes calcite dissolution[J]. Geomicrobiology Journal, 2014,31(7):632-641. [13] 李为,贾丽萍,余龙江,等.小同种类微生物及其碳酸酐酶对土壤-灰岩系统钙镁锌元素迁移作用的土柱模拟实验研究[J].土壤, 2007,39(3):453-459. [14] Li W, Zhou P P, Jia I P, et al. Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi[J]. Mycopathologia, 2009,167:37-46. [15] 李西腾,吴沿友,郝建朝.喀斯特地区碳酸酐酶与环境的关系及意义[J].矿物岩石地球化学通报,2005,24(3):75-79. [16] 王福星,曹建华,黄俊发,等.生物岩溶[M].北京:地质出版社,1993. 61-62. [17] 李军峰,王智慧,张朝晖.喀斯特石漠化山区苔藓多样性及水土保持研究[J].环境科学研究, 2013,26(7):677-696. [18] 付兰, 张朝晖. 贵阳市苔藓植物的生物岩溶溶蚀初探[J]. 贵州师范大学学报:自然科学版, 2010, 28(4):140-143. [19] 张朝晖,祝安,王智慧.黄果树喀斯特洞穴群苔藓植物岩溶的初步研究[J].中国岩溶, 1996, 15(3): 224-232. [20] 曹建华,袁道先.石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J].地球化学,1999,28(3):156-201. [21] 熊红福,王世杰,容丽,等.极端干旱对贵州省喀斯特地区植物的影响[J].应用生态学报,2011,22(5):1127-1134. [22] 曾成,赵敏,杨睿,等.岩溶作用碳汇强度计算的溶蚀试片法和水化学径流法比较:以陈旗岩溶泉域为例[J].水文地质工程地质, 2014, 41(1):106-111. [23] 鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:115-151. [24] Viles H A. Biokarst: review and prospect[J]. Progress in Physical Geography, 1984, 8: 523-542. [25] Viles H A. Organisms and karst geomorphology. In: Viles H A. Ed. Biogeomorphology[M]. Oxford: Basil Blackwell, 1988. 319-350. [26] 吴沿友,李西腾,郝建朝,等.不同植物的碳酸酐酶活力差异研究[J].广西植物,2006, 26(4):366-369. [27] Zaihua Liu. Role of carbonic anhydrase as an activator in carbonate rock dissolution and its implication for atmospheric CO2 sink [J]. Acta Geologica Sinica,2001,75(3):275-278. [28] 章程.不同土地利用下的岩溶作用强度及其碳汇效应[J].科学通报,2011(26):21742180. [29] 曹建华.岩溶土壤系统中生物作用与有机碳转移对CaCO3-CO2-H2O体系的调节与控制[D].南京农业大学,2001
点击查看大图
计量
- 文章访问数: 1587
- HTML浏览量: 266
- PDF下载量: 1059
- 被引次数: 0