Numerical simulation and optimal exploitation scheme for the karst groundwater recourses system of Fengshui spring basin in Zibo region, Shandong Province,China
-
摘要: 沣水泉域岩溶水系统是淄博市及周边地区最主要的供水水源,因原有大武水源地水质严重污染,急需开辟新的水源地,故须重新开展泉域岩溶水资源评价和开采规划工作。文章在充分概化研究区水文地质概念模型的基础上,借助FeFlow软件,建立了基于等效连续介质的三维非均质各向异性岩溶水模型,并利用2016年水位动态数据对模型进行识别和验证。经模型计算可知,在2000-2015年,研究区岩溶地下水日均补给量为104.47万m3/d,排泄量为80.27万m3/d,正均衡24.20万m3/d。对原大武水源地与新增刘征水源地优化开采方案预测的结果表明,最优开采方案为:(1)保持大武水源地现状35.91万m3/d开采条件下,刘征水源地最大开采量为5.5万m3/d,刘征 -大武富水地段最大可开采量为41.41万m3/d;(2)满足刘征 -大武富水地段最大开采条件,大武水源地最大可减采至33.41万m3/d,刘征最大开采量为8万m3/d。Abstract: The Fengshui karst spring system is the most important groundwater resources for water supply in the area of Zibo, Shandong Province. Due to serious industrial pollution of the previous water source in Dawu area, a new water source located in Liuzheng area is identified and explored to carry out the re-assessment of the karst groundwater resources availability and then come up with an optimal exploitation scheme. Through understanding hydrogeological conditions and establishing conceptual model of the study area, a three-dimensional, heterogeneous and anisotropic karst water model has developed by using FeFlow software, based upon the equivalent continuum porous media theory and using the data derived from the 16 year borehole monitoring data. The results of water balance calculation from 2000 to 2015 shows that the average groundwater recharge of the study area is 1.0447×106 m3/d and the average discharge is 8.027×105 m3/d, with a net positive surplus of 2.420×105 m3/d. The model prediction results for the optimal pumping of the karst groundwater suggest that, (1) To maintain the current groundwater exploitation with 3.591×105 m3/d in the Dawu area, the maximum exploitation should be 5.5×104 m3/d in the Liuzheng area, and the total exploitation in the Liuzheng-Dawu area is up to 4.141×105 m3/d; (2) To meet the need of maximum permissive groundwater exploitation in the Liuzheng-Dawu area, the maximum exploitation quantity can be decreased to 3.341×105 m3/d for Dawu area and increased to 8×104 m3/d for Liuzheng area.
-
[1] 周训,陈明佑,方斌,等.埋藏型岩溶地下水源地的三维数值模拟:以天津市宁河北岩溶地下水源地为例[J].中国岩溶,2006,25(1): 6-11. [2] 吴乐,张有全,宫辉力,等.北京市西山地区地下水数值模拟及预测[J].水文地质工程地质,2016,43(3):29-36. [3] Burs D, Bruckmann J, Rüde T R. Developing a structural and conceptual model of a tectonically limited karst aquifer: a hydrogeological study of the Hastenrather Graben near Aachen, Germany[J]. Environmental Earth Sciences.2016, 75:1253. doi: 10.1007/s12665-016-6039. [4] 刘久荣,王新娟,王荣,等.岩溶水数值模拟研究进展[J].城市地质,2012,7(4):1-6. [5] 杨杨,唐建生,苏春田,等.岩溶区多重介质水流模型研究进展[J].中国岩溶.2014,33(4):419-424. [6] 钱家忠,汪家权,葛晓光,等.我国北方型裂隙岩溶水流及污染物运移数值模拟研究进展[J].水科学进展, 2003,14(4):509-512. [7] 王云,于青春,薛亮,等.裂隙岩溶含水系统溢流泉演化过程的数值模拟[J].中国岩溶,2010,22(4):378-384. [8] 魏加华,郭亚娇,王荣,等.复杂岩溶介质地下水模拟研究进展[J].水文地质工程地质,2015,42(3): 27-34. [9] Scanlon B R, Mace R E, Barrett M E, et al. Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA[J]. Journal of Hydrology. 2003, 276(1-4): 137-158. [10] 汪家权,吴义锋,钱家忠,等.济南泉域岩溶地下水三维等参有限元数值模拟[J].煤田地质与勘探,2005,33(3):39-41. [11] 李星宇,南天,王新娟,等.数值模拟方法在隐伏岩溶水源地保护区划分及污染治理中的应用[J].中国岩溶,2014,33(3):280-287. [12] 韩巍,李国敏,黎明,等.大武水源地岩溶地下水开采动态数值模拟分析[J].中国岩溶,2008,27(2):182-188. [13] 沈媛媛,蒋云钟,雷晓辉,等.地下水数值模拟中人为边界的处理方法研究[J].水文地质工程地质,2008,35(6):12-15. [14] 刘建国,许光照,马学礼.基于FeFlow的岩溶管道模型构建方法探讨[J].中国岩溶,2015,34(6):586-590. [15] 陈崇希,林敏,成建梅.地下水动力学(第五版)[M].北京:地质出版社, 2011. [16] 万力,蒋小伟,王旭升.含水层的一种普遍规律:渗透系数随深度衰减[J].高校地质学报,2010,16(01):7-12.
点击查看大图
计量
- 文章访问数: 2126
- HTML浏览量: 329
- PDF下载量: 1157
- 被引次数: 0