Characteristics of sedimentary geology of parent rock at the Xueyudong Cave and its impact on secondary sediments
-
摘要: 为了研究洞穴母岩对洞穴系统及次生沉积物产生的影响,以重庆丰都雪玉洞母岩为研究对象,对其沉积地质特征进行了详细的研究,同时还探讨母岩的沉积地质特征与洞穴发育及次生沉积物特征之间的关联。结果表明,雪玉洞的母岩层位为下三叠统飞仙关组第二段,其沉积相为颗粒滩。母岩的岩性为砂屑灰岩、鲕粒灰岩、砾屑灰岩, 夹少量微晶灰岩。母岩和洞穴次生沉积物的主要矿物成分是低镁方解石(LMC, low magnesium calcite)。母岩较低的Mg/Ca导致洞穴滴水的Mg/Ca也较低,这使得组成次生沉积物的低镁方解石晶体快速侧向生长,并导致方解石晶体纯净、粗大且自形程度高。雪玉洞母岩顶底板岩层沉积期稳定的滩间海沉积环境有助于形成高强度的厚层微晶灰岩从而为洞穴系统的发育提供有效的支撑。这表明洞穴母岩的沉积地质特征会在物质基础的层面对洞穴系统的发育以及洞穴次生沉积物的特征产生显著影响。Abstract: The purpose of this work is to explore the effect of parent rock at caves on the cave system and its secondary sediments. Taking the Xueyudong Cave in Fengdu, Chongqing City as an example, we have made a detailed investigation to characterize its sedimentary geology, and study the relationship between sedimentary characteristics of parent rock and development of the cave and its secondary deposits. The results indicate that the parent rock of Xueyudong Cave belongs to the second member of Triassic Feixianguan Formation with main sedimentary facies as grain shoal. The main types of the rock are calcarenite grainstone, oolitic grainstone, calcirudite grainstone with a little micrite sandwiched. The predominant mineral compositions of the parent rock and secondary sediments are low magnesium calcite (LMC). The low Mg/Ca ratio of the parent rock led to a low Mg/Ca ratio of drip water in the cave, resulting in fast sideward growth of calcite crystals in LMC which are pure, coarse and of highly idiomorphic, that constitute the secondary sediments. The interbank, a relatively quiet sedimentary environment when the roof strata of the Xueyudong Cave were deposited, provided a good condition for the formation of thick-bedded limestone with high strength, thus helpful for development of the cave system. It means that the features of sedimentary geology of the parent rock in the cave can produce obvious influence on the evolution of the cave system and its secondary sediments.
-
[1] Bar-Matthews M, Matthews A, Ayalon A. Environmental Controls of speleothem mineralogy in a karstic dolomitic terrain (Soreq Cave, Israel)[J]. The Journal of Geology,1991, 99(2): 189-207. [2] Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records[J]. Chemical Geology,2000, 166(3-4): 255-269. [3] Frisia S, Borsato A, Fairchild I J, et al. Aragonite-calcite relationships in speleothems (Grotte De Clamouse, France): Environment, fabrics, and carbonate geochemistry[J]. Journal of Sedimentary Research,2002, 72(5): 687-699. [4] Self C A, Hill C A. How speleothems grow: An introduction to the ontogeny of cave minerals[J]. Journal of Cave & Karst Studies,2003. [5] Oster J L, Montaez I P, Kelley N P. Response of a modern cave system to large seasonal precipitation variability[J]. Geochimica et Cosmochimica Acta,2012, 91(5): 92-108. [6] Gascoyne M. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies[J]. Journal of Hydrology,1983, 61(1-3): 213-222. [7] 朱学稳,张远海,韩道山,等. 重庆丰都雪玉洞群的洞穴特征和洞穴沉积物[J]. 中国岩溶,2004, 23(2): 85-90. [8] Pu J, Wang A, Shen L, et al. Factors controlling the growth rate, carbon and oxygen isotope variation in modern calcite precipitation in a subtropical cave, Southwest China[J]. Journal of Asian Earth Sciences,2016, 119: 167-178. [9] Wang A, Junbing P U, Shen L, et al. Natural and human factors of CO2 concentration variations in Xueyu Cave, Chongqing[J]. Tropical Geography,2010, 30(3): 272-277. [10] 王翱宇,蒲俊兵,沈立成,等. 重庆雪玉洞CO2浓度变化的自然与人为因素探讨[J]. 热带地理,2010(3): 272-277. [11] Wang Z, Zhang L, Tao T,et al. Structural analysis of the multi-layer detachment folding in eastern Sichuan Province[J]. 地质学报(英文版),2010, 84(3): 497-514. [12] Jun-Bing P U, Shen L C, Wang A Y, et al. Space-time variation of hydro-geochemistry index of the Xueyu cave system in Fengdu county,Chongqing[J]. Carsologica Sinica,2009, 28(1): 49-54. [13] 黄思静.碳酸盐岩的成岩作用[M].地质出版社,2010,148-150. [14] Huang S J, Qing H R, Huang P P, et al. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China[J]. Science China Earth Sciences,2008, 51(4): 528-539. [15] 黄思静,张萌,孙治雷,等. 川东L2井三叠系飞仙关组碳酸盐样品的锶同位素年龄标定[J]. 成都理工大学学报(自科版),2006, 33(2): 111-116. [16] Zharkov M A, Chumakov N M. Paleogeography and sedimentation settings during Permian-Triassic reorganizations in biosphere[J]. Stratigraphy & Geological Correlation,2001, 9(4): 340-363. [17] Yin H. Late Permian-Middle Triassic sea level changes of Yangtze Platform[J]. Journal of Earth Science,1996, 19(1): 101-104. [18] Choudens-Sanchez V D, Gonzalez L A. Calcite and aragonite precipitation under controlled instantaneous supersaturation: Elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism[J]. Journal of Sedimentary Research,2009, 79(6): 363-376. [19] Stanley S M, Ries J B, Hardie L A. Low-magnesium calcite produced by coralline algae in seawater of Late Cretaceous composition[J]. Proceedings of the National Academy of Sciences,2002, 99(24): 15323-15326. [20] 周福莉,李廷勇,陈虹利,等. 重庆芙蓉洞洞穴水水文地球化学指标的时空变化[J]. 水土保持学报. 2012, 26(3): 253-259. [21] Folk R L. The natural history of crystalline calcium carbonate: Effect of magnesium content and salinity.[J]. Journal of Sedimentary Petrology,1974, 44(1): 40-53. [22] Dreybrodt W, Lauckner J, Liu Z, et al. The kinetics of the reaction CO2+ H2O→H++ HCO3- as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3[J]. Geochimica et Cosmochimica Acta,1996, 60(18): 3375-3381. [23] Liu Z, Dreybrod W. Dissolution kinetics of calcium carbonate minerals in H2O-CO2 solutions in turbulent flow: The role of diffusion boundary layer and the slow reaction H2O + CO2 = H++ HCO3-[J]. Geochimica et Cosmochimica Acta,1997, 61(14): 2879-2889. [24] 袁道先. 中国岩溶动力系统[M]. 地质出版社,2002, 42-49.
点击查看大图
计量
- 文章访问数: 1782
- HTML浏览量: 317
- PDF下载量: 2107
- 被引次数: 0