Variation of hydrochemical characteristics and the ion source in the upstream of Guijiang river:A case study in Guilin section
-
摘要: 本文根据2013年10月至2015年4月桂江桂林站的采样分析数据,讨论桂江上游的水化学组成及河水离子的主要来源。结果表明,研究区河水水化学类型为HCO3-Ca型,HCO3-和Ca2+是主要的阴阳离子,主要来源于流域内碳酸对碳酸盐岩的风化溶解,河水主要离子浓度受流量变化的影响,呈现出冬高夏低的趋势。同时,流域内硫酸也参与了碳酸盐岩的风化。此外,虽然流域内碳酸盐岩仅少量分布,但河水水化学特征仍受碳酸盐岩和硅酸盐岩的共同控制。主成分分析结果表明,第一因子贡献率为38.8%,与K+、Na+、Mg2+、Cl-、SO42-、NO3-相关性较大,在本研究中代表人类活动及大气沉降的影响,其中NO3-主要来源于流域内农业活动的面源污染;第二因子贡献率为28.2%,与HCO3-和Ca2+相关性大,代表碳酸盐岩的溶解;第三因子没有明显具有高载荷的指标。Abstract: In order to discuss the hydrochemical composition variation and the source of dissolved ions in the upper stream Guijiang river, observations and sampling were undertaken in October 2013 to April 2015. The results show that the hydrochemistry type of Guilin section is of HCO3-Ca type. Ca2+ and HCO3- are the main cations and anions, which are mainly from the weathering of carbonate rocks in the basin. The concentration of ions is controlled by the river flow, which is higher in the winter while low in the summer. Meanwhile, the sulfate also takes part in the carbonate weathering in the basin.The hydrochemistry of Guijiang upstream is controlled by carbonate as well as silicate rocks, even though there is much limited carbonate rocks occur in the basin. Analysis of principal compositions shows that the contribution ratio of the first factor is 38.8%, well correlated with K+, Na+, Mg2+, Cl-, SO42- and NO3-, representing the influence of human activity and precipitation on the water. And the contribution ratio of the second factor is 28.2%, including HCO3-and Ca2+, which indicates the solution of carbonate rocks. In addition, there is no significantly effective load indicator of the third factor.
-
[1] Gaillardet J, Dupre B, Louvat P, et al.Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999,159(1/4):3-30. [2] Li S, Lu X, He M, et al. Major element chemistry in the upper Yangtze River: A case study of the Longchuanjiang River [J]. Geomorphology, 2011, 129(1): 29-42. [3] 张立成,赵桂久,董文江,等.湘江水系河水的地球化学特征[J].地理学报,1987,42(3):243-251. [4] 陈静生,王飞越,何大伟.黄河水质地球化学[J].地学前缘,2006,13(1):58-73. [5] 陈静生,王飞越,夏星辉.长江水质地球化学[J].地学前缘,2006,13(1):74-85. [6] 高全洲,沈承德,孙彦敏,等.珠江马口站、河口站断面水体有机碳含量的季节变化[J].地球化学,1999,28(3):273-280. [7] 高全洲,沈承德,孙彦敏,等.珠江流域的化学侵蚀[J].地球化学,2001,30(3):223-230. [8] 焦树林,高全洲,刘昆.珠江流域西江、北江河流溶解无机碳及其稳定同位素组成特征[J].中山大学学报(自然科学版),2009,48(2):99-105. [9] HU M H, Stallard R F, Edmond J M.Major ion chemistry of some large Chinese rivers[J].Nature,1982,298(5):552-553. [10] 鲍丽然,李晓东,刘小龙.嘉陵江河水主要离子化学组成的时间和空间变化特征[J].水利水电科技进展,2010,30(4):35-40. [11] 张红波,何师意,于奭,等.桂江流域河流水化学特征及影响因素[J].中国岩溶,2012,31(4):395-401. [12] 张红波.桂江流域水化学与岩溶碳汇动态变化特征[D].重庆:西南大学,2013. [13] 张红波,何师意,于奭,等.夏季岩溶区河流的水化学及碳汇动态变化:以桂林漓江为例[J].重庆:西南师范大学学报(自然科学版),2013,38(3):55-61. [14] 张红波,何师意,闫志为,等.岩溶区河流洪水过程中的碳汇动态变化:以桂林漓江为例[J].桂林理工大学学报,2012,32(4):512-518. [15] 黄奇波,刘朋雨,覃小群,等.桂江流域岩溶碳汇特征[J].中国岩溶,2011,30(4):437-442. [16] 黄奇波,覃小群,唐萍萍,等.桂江流域河流有机碳特征[J].地质科技情报,2014,33(2):148-153. [17] 唐文魁,陶贞,高全洲,等.桂江主要离子及溶解无机碳的生物地球化学过程[J].环境科学,2014,35(6):2099-2107. [18] 于奭,孙平安,杜文越,等.人类活动影响下水化学特征的影响:以西江中上游流域为例[J].环境科学,2015,36(1):72-79. [19] 周秀平,黄伟军,王文圣.桂江流域径流变化特性分析[J].广西水利水电,2008(1):22-25,29. [20] 刘雪春,李诗颖.桂林漓江流域农村和农业污染源调查[J].湖北农业科学,2015,54(14):3372-3375. [21] 廖华明.桂林市农业区域化发展调查与分析[J].现代农业科技,2015(18):296-298. [22] Meybeck M.Pathways of major elements from land to ocean through rivers[C]//Martin J M,Burton J D, Eisma D, eds.River in puts to ocean systems.New York:United Nations Press,1981:18-30. [23] 耿金,陈建生,张时音.赤水河上游流域水化学变化与离子成因分析[J].水文,2013,33(1):44-50. [24] 原雅琼,何师意,于奭,等.柳江流域柳州断面水化学特征及无机碳汇通量分析[J].环境科学,2015,36(7):2437-2445. [25] 孙平安,于奭,莫付珍,等.不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J].环境科学,2016,37(1):123-131. [26] 刘再华,Dreybrodt W, 李华举.灰岩和白云岩溶解速率控制机理的比较[J].地球科学,2006,31(3):411-416. [27] 蒋宝琼.桂林市农业面源污染现状及治理对策[J].现代农业科技,2012(2):282-295. [28] 解晨骥,高全洲,陶贞.流域化学风化与河流水化学研究综述与展望[J].热带地理,2012,32(4):331-337,356. [29] Roy S,Gaillardet J,Allègre C J.Geochemistry of dissolved and suspended loads of the Seine River,France: anthropogenic impact,carbonate and silicate weathering[J].Geochimica et Cosmochimica Acta, 1999, 63(9): 1277-1292. [30] 叶宏萌,李国平,袁旭音,等.山区性小流域水化学特征及物源贡献研究:以武夷山九曲溪流域为例[J].环境化学,2016,35(3):581-589. [31] 杨平恒,袁道先,叶许春,等.降雨期间岩溶地下水化学组分的来源及运移路径[J].科学通报,2013,58(18):1755-1763. [32] 王亚平,王岚,许春雪,等.长江水系水文地球化学特征及主要离子的化学成因[J].地质通报,2010,29(2/3):446-456. [33] 何亮.主成分分析在SPSS中的应用[J].山西农业大学学报,2007,6(5):20-22. [34] 林海明,杜子芳.主成分分析综合评价应该注意的问题[J].统计研究,2013,30(8):25-31. [35] 张红波,于奭,何师意,等.桂林岩溶区大气降水的化学特征分析[J].中国岩溶,2012,31(3):289-295. [36] 蒋辉.环境水化学[M].北京:化学工业出版社, 2003. [37] 范旸,季宏兵,丁淮剑.城市化过程对北京周边河流水化学特征的影响[J].首都师范大学学报(自然科学版),2010,31(5):43-50. [38] 刘再华.碳酸盐岩岩溶作用对大气CO2沉降的贡献[J].中国岩溶,2000,19(4):3-10. [39] Amiotte-Suchet P A, Probst J L.Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins[J].Chem ical Geology, 1993, 107(3/4): 205-210. [40] Jansen N,Hartmann J,Lauerwald R,et al.Dissolved silica mobilization in the conterminous USA[J].Chemical Geology,2010,270(1/4): 90-109. [41] 刘新华.因子分析中数据正向化处理的必要性及其软件实现[J].重庆工学院学报(自然科学版),2009,23(9):152-155. [42] 孙媛媛,季宏兵,罗建美,等.赣南小流域的水文地球化学特征和主要风化过程[J].环境化学,2006,25(5):550-557.
点击查看大图
计量
- 文章访问数: 2116
- HTML浏览量: 327
- PDF下载量: 1226
- 被引次数: 0