• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

贵州喀斯特地区碳酸盐岩表生古菌群落结构及多样性研究——以南江大峡谷为例

唐 源 连 宾 程建中

唐 源, 连 宾, 程建中. 贵州喀斯特地区碳酸盐岩表生古菌群落结构及多样性研究——以南江大峡谷为例[J]. 中国岩溶, 2017, 36(2): 193-201. doi: 10.11932/karst20170206
引用本文: 唐 源, 连 宾, 程建中. 贵州喀斯特地区碳酸盐岩表生古菌群落结构及多样性研究——以南江大峡谷为例[J]. 中国岩溶, 2017, 36(2): 193-201. doi: 10.11932/karst20170206
TANG Yuan, LIAN Bin, CHENG Jianzhong. Archaeal community structure and diversity of the carbonate rocks in karst regions, Guizhou:A case study of the Nanjiang canyon[J]. CARSOLOGICA SINICA, 2017, 36(2): 193-201. doi: 10.11932/karst20170206
Citation: TANG Yuan, LIAN Bin, CHENG Jianzhong. Archaeal community structure and diversity of the carbonate rocks in karst regions, Guizhou:A case study of the Nanjiang canyon[J]. CARSOLOGICA SINICA, 2017, 36(2): 193-201. doi: 10.11932/karst20170206

贵州喀斯特地区碳酸盐岩表生古菌群落结构及多样性研究——以南江大峡谷为例

doi: 10.11932/karst20170206
基金项目: 国家自然科学基金项目(41503080);贵州省科学技术基金项目(黔科合J字 [2014]2168号);贵州省科技支撑计划项目农业攻关(黔科合NY[2015]3001-1;NY[2013]3019);贵州省科技重大专项计划(黔科合重大专项字[2014]6015-2-1);中国科学院地球化学研究所领域前沿项目

Archaeal community structure and diversity of the carbonate rocks in karst regions, Guizhou:A case study of the Nanjiang canyon

  • 摘要: 为了研究贵州喀斯特地区碳酸盐岩表生古菌群落结构的多样性,应用16S rDNA文库技术,对采集于贵州南江大峡谷的白云岩和石灰岩样品进行基因文库的构建和限制性片段长度多态性(RFLP)分析。用限制性核酸内切酶MspⅠ对两个文库中分别随机挑选的300个阳性克隆子进行酶切分型,白云岩和石灰岩16S rDNA基因文库各得到14和13个基因型,其覆盖率分别为95.4%和91.3%,香农指数分别为2.14和1.93。系统发育分析表明白云岩和石灰岩表生古菌克隆子全部归属于泉古菌门(Crenarchaeota),代表性克隆与GenBank数据库已有16S rRNA序列的相似性为96%~100%,且最高相似性序列均来源于土壤及岩石环境的未可培养古菌序列。

     

  • [1] 连宾. 碳酸盐岩风化成土过程中的微生物作用[J]. 矿物岩石地球化学通报, 2010, 29(1): 52-56.
    [2] 张天汉,代玉,王智慧,等. 贵州关岭县喀斯特峰丛石漠区苔藓群落生态特征[J]. 中国岩溶, 2014, 33(2): 192-200.
    [3] Gorbushina A A. Life on the rocks [J]. Environmental Microbiology, 2007, 9(7): 1613-1631.
    [4] Hose L D, Palmer A N, Palmer M V, et al. Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment [J]. Chemical Geology,2000,169(3/4):399-423.
    [5] Horath T, Bachofen R. Molecular Characterization of an Endolithic Microbial Community in Dolomite Rock in the Central Alps (Switzerland) [J]. Microbial Ecology, 2009, 58(2): 290-306.
    [6] Wong F K Y, Lau M C Y, Lacap D C, et al. Endolithic Microbial Colonization of Limestone in a High-altitude Arid Environment [J]. Microbial Ecology, 2010, 59(4): 689-699.
    [7] Tang Y, Lian B. Diversity of endolithic fungal communities in dolomite and limestone rocks from Nanjiang Canyon in Guizhou karst area, China [J]. Canadian Journal of Microbiology, 2012, 58(6): 685-693.
    [8] Tang Y, Lian B, Dong H L, et al. Endolithic bacterial communities in dolomite and limestone rocks from the Nanjiang Canyon in Guizhou karst area (China) [J]. Geomicrobiology Journal, 2012, 29(3): 213-225.
    [9] Takai K, Moser D P, DeFlaun M, et al. Archaeal diversity in waters from deep South African gold mines [J]. Applied and Environmental Microbiology, 2001, 67(12): 5750-5760.
    [10] 姜丽晶, 彭晓彤, 周怀阳, 等. 非培养手段分析珠江口淇澳岛海岸带沉积物中的古菌多样性[J]. 海洋学报, 2008, 30(4): 114-122.
    [11] 李曙光, 皮昀丹, Zhang Chuan-lun. 古菌研究及其展望[J]. 中国科学技术大学学报, 2007, 37(8): 830-838.
    [12] Volkl P, Huber R, Drobner E, et al. Pyrobaculum-Aerophilum Sp-Nov, a Novel Nitrate-Reducing Hyperthermophilic Archaeum [J].Applied and Environmental Microbiology, 1993, 59(9): 2918-2926.
    [13] Bonnie C, Sandy Y, Ken F. Archaeal habitats-from the extreme to the ordinary [J]. Canadian Journal of Microbiology, 2006, 52(2): 73-116.
    [14] Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea [J]. Nature Reviews Microbiology, 2005, 3(6): 479-488.
    [15] Galand P E, Lovejoy C, Vincent W F. Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean [J]. Aquatic Microbial Ecology, 2006, 44(2): 115-126.
    [16] Herndl G J, Reinthaler T, Teira E, et al. Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean [J]. Applied and Environmental Microbiology, 2005, 71(5): 2303-2309.
    [17] Walsh D A, Papke R T, Doolittle W F. Archaeal diversity along a soil salinity gradient prone to disturbance [J]. Environmental Microbiology, 2005, 7(10): 1655-1666.
    [18] Yan B, Hong K,Yu Z N. Archaeal communities in mangrove soil characterized by 16S rRNA gene clones [J]. Journal of Microbiology, 2006, 44(5): 566-571.
    [19] Beja O, Koonin E V, Aravind L, et al. Comparative genomic analysis of archaeal genotypic variants in a single population and in two different oceanic provinces [J]. Applied and Environmental Microbiology, 2002, 68(1): 335-345.
    [20] Bintrim S B, Donohue T J, Handelsman J, et al. Molecular phylogeny of archaea from soil [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(1): 277-282.
    [21] Huber T, Faulkner G, Hugenholtz P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments [J]. Bioinformatics, 2004, 20(14): 2317-2319.
    [22] Cole J R, Chai B, Marsh T L, et al. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy [J]. Nucleic Acids Research, 2003, 31(1): 442-443.
    [23] Altschul S F, Gish W, Miller W, et al. Basic Local Alignment Search Tool [J]. Journal of Molecular biology, 1990, 215(3): 403-410.
    [24] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(25): 4876-4882.
    [25] Kimura M. A Simple Method for Estimating Evolutionary Rates of Base Substitutions through Comparative Studies of Nucleotide-Sequences [J]. Journal of Molecular Evolution, 1980, 16(2): 111-120.
    [26] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Briefings in Bioinformatics, 2004, 5(2): 150-163.
    [27] Good I J. The Population Frequencies of Species and the Estimation of Population Parameters [J]. Biometrika, 1953, 40(3/4): 237-264.
    [28] Shuang J L, Zhang X Y, Zhao Z Z, et al. Bacterial phylogenetic diversity in a Spartina marsh in China [J]. Ecological Engineering, 2009, 35(4): 529-535.
    [29] Hill T C J, Walsh K A, Harris J A, et al. Using ecological diversity measures with bacterial communities [J]. FEMS Microbial Ecology, 2003, 43(1): 1-11.
    [30] Hansel C M, Fendorf S, Jardine P M, et al. Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile [J]. Applied and Environmental Microbiology, 2008, 74(5): 1620-1633.
    [31] Delong E F. Archaea in Coastal Marine Environments [J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(12): 5685-5689.
    [32] MacGregor B J, Moser D P, Alm E W, et al. Crenarchaeota in Lake Michigan sediment [J]. Applied and Environmental Microbiology, 1997, 63(3): 1178-1181.
    [33] Stein L Y, Jones G, Alexander B, et al. Intriguing microbial diversity associated with metal-rich particles from a freshwater reservoir [J]. Fems Microbiology Ecology, 2002, 42(3):431-440.
    [34] Stein L Y, La Duc M T, Grundl T J, et al. Bacterial and archaeal populations associated with freshwater ferromanganous micronodules and sediments [J]. Environmental Microbiology, 2001, 3(1): 10-18.
    [35] Buckley D H, Graber J R, Schmidt T M. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils [J]. Applied and Environmental Microbiology, 1998, 64(11): 4333-4339.
    [36] Jurgens G, Saano A. Diversity of soil Archaea in boreal forest before, and after clear-cutting and prescribed burning [J]. Fems Microbiology Ecology, 1999, 29(2): 205-213.
    [37] Ochsenreiter T, Selezi D, Quaiser A, et al. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR [J]. Environmental Microbiology, 2003, 5(9): 787-797.
    [38] Lee E Y, Lee H K, Lee Y K, et al. Diversity of symbiotic archaeal communities in marine sponges from Korea [J]. Biomolecular Engineering, 2003, 20(4/6): 299-304.
    [39] Margot H, Acebal C, Toril E, et al. Consistent association of crenarchaeal Archaea with sponges of the genus Axinella [J]. Marine Biology, 2002, 140(4): 739-745.
    [40] Dawson S C, DeLong E F, Pace N R. Phylogenetic and ecological perspectives on uncultured Crenarchaeota and Korarchaeota [C].// Dworkin M, Falkow S, Rosenberg E, et al. The prokaryotes. New York: Springer, 2006: 281-289.
    [41] Spear J R, Walker J J, McCollom T M, et al. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(7):2555-2560.
    [42] Stahl D A, de la Torre JR. Physiology and diversity of ammonia-oxidizing archaea [J]. Annual Review Microbiology, 2012, 66(4):83-101.
    [43] Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils [J]. Nature, 2006, 442(7104): 806-809.
    [44] Francis C A, Roberts K J, Beman J M, et al. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(41):14683-14688.
    [45] Lian B, Chen Y, Tang Y. Microbes on carbonate rocks and pedogenesis in karst regions [J].Journal of Earth Science, 2010, 21(S1):293-296.
    [46] 连宾, 袁道先,刘再华. 岩溶生态系统中微生物对岩溶作用影响的认识[J]. 科学通报, 2011, 56(26): 2158-2161.
  • 加载中
计量
  • 文章访问数:  1810
  • HTML浏览量:  408
  • PDF下载量:  1127
  • 被引次数: 0
出版历程
  • 发布日期:  2017-04-25

目录

    /

    返回文章
    返回