Carbonic anhydrase activity of six epilithic mosses and their underlying soil in the Puding karst area,Guizhou Province
-
摘要: 以贵州普定喀斯特石漠化区域石生银叶真藓(Bryum argenteum Hedw.)、扭口藓(Barbula unguiculata Hedw.)、穗枝赤齿藓(Erythrodontium julaceum(Schwaegr.)Par.)、美灰藓(Eurohypnum leptothollum(C. Muell. )Ando.)、东亚砂藓(Racomitrium japonicum Dozy et Molk.)和雪茶(地衣)(Thamnolia vermicularia(Ach.)Asa-hina)为对象,研究了这些石生植物和其基质土壤碳酸酐酶(CA)的活性,可为石生植物的生物岩溶作用机理和石漠化生态环境的治理提供一定的参考。结果表明,6种植物CA的活性存在一定的差异,以美灰藓的CA活性272.99 U·g-1(FW)最高,东亚砂藓的CA活性33.45 U·g-1(FW)最低;银叶真藓基部土壤CA活性最高,为101.81 U·g-1(干土),美灰藓CA活性15.95 U·g-1(干土)最低。CA活性与土壤全磷、全钾、石砾含量和土壤含水量之间呈极显著的相关性。Abstract: The samples of six moss plants include B.argenteum, B.unguiculata, E.julaceum, E.leptothollum, R japonicum and T vermicularia were collected from the karst rock desertification area in Puding of Guizhou, as the objects of this study. The carbonic anhydrase (CA) activity of the epilithic plants and the matrix of soil was studied, from which the analyses of bio-karst mechanism and governance of ecological environments in karst rocky desertification areas can be performed.The results show that there are some differences in carbonic anhydrase activity of six epilithic plants.The E. leptothollum is highest, reaching 272.99 U·g-1(FW), while the minimum is 33.45 U·g-1(FW) in R. japonicum. The B.argenteum base soil CA activity(101.81 U·g-1(dry soil) is the highest. The E. leptothollum is 15.95 U·g-1 (dry soils) as the lowest. It could be concluded that CA activity has positive correlations with plant and soil carbonic anhydrase content of total phosphorus, kalium, gravel and soil moisture, respectively.
-
[1] Smith K S,Ferry J G.Prokaryotic carbonic anhydrases[J].FEMS Microbiology Reviews, 2000,24:335-366. [2] 刘再华.碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义 [J].地球学报, 2001, 22(5): 477-480. [3] Li W, Yu L J, Wu Y, et al. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase[J]. Bioresource Technology, 2007,98:950-953. [4] Xiao L, Hao J, Wang W, et al. The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution[J]. Geomicrobiology Journal, 2014,31(7):632-641. [5] Li W, Yu L J, Wu Y, et al.D X. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase[J]. Bioresource Technology, 2007,98:950-953. [6] 李为,贾丽萍,余龙江,等.小同种类微生物及其碳酸酐酶对土壤-灰岩系统钙镁锌元素迁移作用的土柱模拟实验研究[J].土壤, 2007,39(3):453-459. [7] 丁丽君,连宾.碳酸钙微生物风化试验研究[J].中国岩溶,2008,27 (3):197-200. [8] Li W, Zhou P P, Jia L P, et al. Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi[J]. Mycopathologia, 2009,167:37-46. [9] Zhang Y M, Cao T Pan B R. A review on the studies of bryophyte ecology in arid and semi-arid areas[J].Acta Ecol Sin, 2002,22(7):1129-1134. [10] 张朝晖.贵阳市苔藓植物的生物岩溶溶蚀初探[J].贵州师范大学学报:自然科学版.2010, 28(4):140-143. [11] 曹建华,袁道先.石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J].地球化学,1999,28(3): 248-255. [12] Jiang Z C, Yuan D X.CO2 source sink in karst processes in karst areas of China[J].Episodes,1999,22(1):33-35. [13] 吴沿友,李西腾,郝建朝,等.不同植物的碳酸酐酶活力差异研究[J].广西植物, 2006, 26(4):366-369. [14] 中国科学院昆明植物研究所.苔藓植物 苔纲 角苔纲[M].北京:科学出版社,2000. [15] 中国科学院昆明植物研究所.云南植物志[M].北京:科学出版社,2002. [16] 中国科学院昆明植物研究所.云南植物志[M].北京:科学出版社,2005. [17] Brownell,P F,Bielig,L M,Grof,C P L.Increased Carbonic Anhydrase Activity in Leaves of Sodium-Deficient C4 Plants[J]. Functional Plant Biology, 1991, 18(6):589-592. [18] 郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报, 2006, 37(3):470-474. [19] 吴沿友,吴德勇,张红萍,等.大豆子叶中的碳酸酐酶活性和光合特性研究[J].河南农业科学,2007(2):43-45. [20] Stark D D, Moss A A, Brasch R C, et al. Neuroblastoma: diagnostic imaging and staging.[J]. Radiology, 1983, 148(1):101-512. [21] 张显强,曾建军,谌金吾,等.石漠化干旱环境中石生藓类水分吸收特征及其结构适应性[J].生态学报,2012,32(12):3902-3911. [22] 刘再华,袁道先.中国典型表层岩溶系统的地球化学动态特征及其环境意义[J].地质论评, 2000, 46(3):324-327. [23] Mayaba N, Beckett R P. Increased activities of superoxide dismutase and catalase are not the mechanism of desiccation tolerance induced by hardening in the moss Atrichum androgynum[J]. Journal of Bryology, 2003, 25(4):281-286. [24] 陈朝辉,方国祥.岩溶山区土壤形成机制与石山改造利用[J].中国岩溶, 1997,16(4):393-396. [25] 杨胜天,朱启疆.论喀斯特环境中土壤退化的研究[J].中国岩溶, 1999, 18(2):169-176. [26] 曹建华,潘根兴,袁道先.柠檬酸对石灰岩溶蚀动力模拟及岩溶意义[J].中国岩溶, 2001, 20(1):1-4. [27] Smith K S, Jakubzick C , Whittam T S, et al. Carbonic anhydrase is an ancient enzyme wide spread in prokaryotes.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(26):151-849. [28] Smith K S,Ferry J G.Prokaryotic carbonic anhydrases[J].FEMS Microbiology Reviews, 2000,24:335-366. [29] 刘再华.碳酸酐酶对碳酸盐岩溶解的催化作用及其在大气CO2沉降中的意义 [J].地球学报, 2001, 22(5): 477-480. [30] Li W, Yu L J, Wu Y, et al. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase[J]. Bioresource Technology, 2007,98:950-953. [31] Xiao L, Hao J, Wang W, et al. The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution[J]. Geomicrobiology Journal, 2014,31(7):632-641. [32] Li W, Yu L J, Wu Y, et al.D X. Enhancement of Ca2+ release from limestone by microbial extracellular carbonic anhydrase[J]. Bioresource Technology, 2007,98:950-953. [33] 李为,贾丽萍,余龙江,等.小同种类微生物及其碳酸酐酶对土壤-灰岩系统钙镁锌元素迁移作用的土柱模拟实验研究[J].土壤, 2007,39(3):453-459. [34] 丁丽君,连宾.碳酸钙微生物风化试验研究[J].中国岩溶,2008,27 (3):197-200. [35] Li W, Zhou P P, Jia L P, et al. Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi[J]. Mycopathologia, 2009,167:37-46. [36] Zhang Y M, Cao T Pan B R. A review on the studies of bryophyte ecology in arid and semi-arid areas[J].Acta Ecol Sin, 2002,22(7):1129-1134. [37] 张朝晖.贵阳市苔藓植物的生物岩溶溶蚀初探[J].贵州师范大学学报:自然科学版.2010, 28(4):140-143. [38] 曹建华,袁道先.石生藻类、地衣、苔藓与碳酸盐岩持水性及生态意义[J].地球化学,1999,28(3): 248-255. [39] Jiang Z C, Yuan D X.CO2 source sink in karst processes in karst areas of China[J].Episodes,1999,22(1):33-35. [40] 吴沿友,李西腾,郝建朝,等.不同植物的碳酸酐酶活力差异研究[J].广西植物, 2006, 26(4):366-369. [41] 中国科学院昆明植物研究所.苔藓植物 苔纲 角苔纲[M].北京:科学出版社,2000. [42] 中国科学院昆明植物研究所.云南植物志[M].北京:科学出版社,2002. [43] 中国科学院昆明植物研究所.云南植物志[M].北京:科学出版社,2005. [44] Brownell,P F,Bielig,L M,Grof,C P L.Increased Carbonic Anhydrase Activity in Leaves of Sodium-Deficient C4 Plants[J]. Functional Plant Biology, 1991, 18(6):589-592. [45] 郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报, 2006, 37(3):470-474. [46] 吴沿友,吴德勇,张红萍,等.大豆子叶中的碳酸酐酶活性和光合特性研究[J].河南农业科学,2007(2):43-45. [47] Stark D D, Moss A A, Brasch R C, et al. Neuroblastoma: diagnostic imaging and staging.[J]. Radiology, 1983, 148(1):101-512. [48] 张显强,曾建军,谌金吾,等.石漠化干旱环境中石生藓类水分吸收特征及其结构适应性[J].生态学报,2012,32(12):3902-3911. [49] 刘再华,袁道先.中国典型表层岩溶系统的地球化学动态特征及其环境意义[J].地质论评, 2000, 46(3):324-327. [50] Mayaba N, Beckett R P. Increased activities of superoxide dismutase and catalase are not the mechanism of desiccation tolerance induced by hardening in the moss Atrichum androgynum[J]. Journal of Bryology, 2003, 25(4):281-286. [51] 陈朝辉,方国祥.岩溶山区土壤形成机制与石山改造利用[J].中国岩溶, 1997,16(4):393-396. [52] 杨胜天,朱启疆.论喀斯特环境中土壤退化的研究[J].中国岩溶, 1999, 18(2):169-176. [53] 曹建华,潘根兴,袁道先.柠檬酸对石灰岩溶蚀动力模拟及岩溶意义[J].中国岩溶, 2001, 20(1):1-4. [54] Smith K S, Jakubzick C , Whittam T S, et al. Carbonic anhydrase is an ancient enzyme wide spread in prokaryotes.[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(26):151-849.
点击查看大图
计量
- 文章访问数: 1791
- HTML浏览量: 297
- PDF下载量: 1204
- 被引次数: 0