Climatic implications of stalagmite grey scale sequence during the Early Holocene from the Yangkou cave, Chongqing
-
摘要: 以采自重庆南川地区金佛山羊口洞中一支石笋YK719为研究对象,利用精确的230Th测年数据、δ18O数据和灰度数据重建了重庆地区早全新世古气候变化序列。将石笋YK719灰度序列和δ18O记录进行对比后发现,在弱季风时段,石笋δ18O值偏重,石笋灰度值较高,灰度序列表现出“谷”构造;反之亦然。分析显示羊口洞石笋灰度序列与树轮Δ14C数据、太阳黑子数据具有较高的相关性,说明太阳活动是驱动石笋灰度序列变化的一个重要因素。太阳活动可能通过温度和季风降水两方面来影响石笋灰度的变化:温度升高促使土壤微生物活动量增加,土壤中可溶性有机碳和CO2含量增加,从而形成较为纯净的方解石沉积物,石笋颜色暗而透明,反之,石笋表现为不透明乳白色;北大西洋浮冰变化在早全新世可能通过季风-欧亚大陆雪盖耦合来间接地影响亚洲季风降水变化,从而影响石笋灰度的变化。Abstract: One stalagmite (YK719) from the Yangkou cave at the Jinfo Mountains, Nanchuan in Chongqing is used as the research object in this article. The purpose is to reconstruct the climate change in the early Holocene with accurate 230Th dating results, δ18O and grey scale data. Comparison of the grey scale sequence and δ18O suggests that δ18O value was heavier during the weak monsoon period. Accordingly, the grey scale sequence shows a “trough-shaped” pattern. However, it showed “a crest” pattern when the monsoon was powerful. Furthermore, the grey scale value has a good correlation with the tree ring Δ14C data and the sunspot number, suggesting the solar activity is an important factor in controlling the variation of grey scale values. Solar activity might affect the grey scale value variation via temperature and monsoon precipitation,(1) The increase of temperature leads to the rise of soil microbial activity and a large amount of decomposed organic matter. Meanwhile, rock would be dissolved faster for the rise in the dissolved organic carbon and soil CO2. Thus, the relatively pure calcite would be deposited with darkish and transparent appearance. Otherwise, it would be opaque and milky; (2) Solar activity-induced changes in the North Atlantic floating ice may indirectly affect the Asian monsoon precipitation variation through the coupling of the monsoon and Eurasian snow cap in the early Holocene, so as to affect the change of grey scale values of stalagmites.
-
Key words:
- stalagmite /
- grey scale value /
- early Holocene /
- east Asian monsoon /
- solar activity
-
[1] Fairchild I J, Smith C L, Baker A, et al. Modification and preservation of environmental signals in speleothems[J]. Earth Science Reviews ,2006,75(1):105-153. [2] Yuan D X, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the Last Interglacial Asian Monsoon[J]. Science, 2004,304(5670):575-578. [3] Hu C Y, Henderson G M, Huang J H, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3 /4): 221-232. [4] Cai Y J, Tan L C, Cheng H, et al. The variation of summer monsoon precipitation in central China since the lase deglaciation[J]. Earth and Planetary Science Letters, 2010, 291(1):23-31. [5] 程海, 艾思本, 王先锋,等. 中国南方石笋氧同位素记录的重要意义[J]. 第四纪研究, 2005, 25(2): 157-163. [6] 杨勋林, 张平中, 袁道先,等. 黄龙洞年轻石笋的210Pb测年研究[J]. 地质论评, 2010, 56(4): 543-548. [7] 谭明,南素兰.中国季风区降水同位素年际变化的“环流效应”初探[J]. 第四纪研究, 2010, 30(3): 620-622. [8] 林玉石,张美良,程海,等.贵州荔波第四纪晚近期石笋地质年表与气候事件[J]. 地学前缘, 2010, 10(2): 341-350. [9] Hu C Y, Huang J H, Fang N Q, et al. Adsorbed silica in stalagmite carbonate and its relationship to past rainfall[J]. Geochimica Etcosmochimica Acta, 2005,69(9): 2285-2292. [10] Zhou H Y, Wang Q, Zhao J X, et al. Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2008, 270(1):128-138. [11] Zhou H Y, Feng Y X, Zhao J X, et al. Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment[J]. Chemical Geology, 2009, 268(3):233-247. [12] 周厚云,王悦,黄柳苑,等. 氧同位素阶段5c~d 时期川东北石笋Mg, Sr和Ba记录及其意义[J]. 中国科学,2011, 56(33):2791-2796. [13] 杨勋林,袁道先,张月明,等.湖北仙女山人工隧洞现代石笋气候学:灰度及其指示意义[J]. 中国岩溶, 2012, 31(3): 248-252. [14] 孙东怀,刘禹,谭明.古环境记录的数字图像分析及应用[J].科学通报,2002,47(21):1613-1621. [15] 张任,朱学稳,韩道山,等. 重庆市南川金佛山岩溶洞穴发育特征初析[J]. 中国岩溶, 1998, 17(3): 196-211. [16] 王建力,袁道先,李廷勇,等. 气候变化的岩溶记录[M]. 北京:科学出版社, 2009, 96-97. [17] Cheng H, Adkins J, Edwards R L, et al. U-Th dating of deep-sea corals[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2401-2416. [18] Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. [19] Liu Z Y, Wen X Y, Brady E C, et al. Chinese cave records and the East Asian Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83: 115-128. [20] Fleitmann D, Burns S J, Mudelsee M, et al. Holocene Forcing of the Indian Monsoon Recorded in a Stalagmite from Souther [J]. Science, 2003, 300(5626): 1737-1739. [21] Fleitmann D, Burns S J, Mangini A, et al. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra) [J]. Quaternary Science Reviews , 2007,26(1):170-188. [22] Bond G, Showers W, Cheseby M, et al. A pervasive millennial-Scale cycle in North Atlantic Holocene and Glacial Climate[J]. Science, 1997,278(5341):1257-1266. [23] 汪品先.全球季风的地质演变[J].科学通报, 2009, 54(5): 535-556. [24] 张美良,程海,林玉石,等.贵州荔波1.5万年以来石笋高分辨率古气候环境记录[J]. 地球化学, 2004, 33(1): 65-74. [25] Shopov Y Y, Ford D C, Schwarcz H P. Luminescent microbanding in speleothems:high-resolution chronology and paleoclimate[J]. Geology, 1994, 22(5):407-410. [26] 刘东生,谭明,秦小光,等.洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J].第四纪研究,1997(1):41-51. [27] 秦小光,刘东生,谭明,等. 北京石花洞石笋微层灰度变化特征及其气候意义:Ⅰ微层显微特征[J].中国科学(D辑) ,1998, 28(1):91-96. [28] 秦小光,刘东生,谭明,等.北京石花洞石笋微层灰度变化特征及其气候意义:Ⅱ灰度的年际变化[J].中国科学(D辑) ,2000, 30( 3):239-248. [29] 汪永进,孔兴功,邵晓华,等. 末次盛冰期百年尺度气候变化的南京石笋记录[J].第四纪研究, 2002, 22(3): 243-251. [30] 袁野.甘肃武都万象洞石笋灰度-微层特征及其古气候意义[D]. 兰州: 兰州大学, 2011. [31] 张德忠,白益军,桑文翠,等. 末次冰消期亚洲季风强度变化的黄土高原西部万象洞石笋灰度记录[J]. 第四纪研究,2011,31(5):791-799. [32] 马乐,蔡演军,秦世江. 贵州七星洞石笋记录的最近2300年气候和环境变化[J]. 地球环境学报, 2015, 6(3): 135-144. [33] Duan W H, Tan M, Ma Z B, et al. The palaeoenvironmental significance of δ13C of stalagmite BW-1 from Beijing, China during Younger Dryas intervals inferred from the grey level profile[J]. Boreas, 2013, DOI 10.1111/bor.12034: 243-250. [34] Dreybrodt W. Deposition of calcite from thin films of natural calcareous solutions and the growth of speleothems[J]. Chemical Geology, 1980, 29(1-4):89-105. [35] Stuiver M, Paula J R, Edouard B, et al.Intcal98 radiocarbon age calibration,24,000-0 cal B.P.[J]. Radiocarbon, 1998, 40(3): 1041-1083. [36] Eddy J A. The Maunder minimum[J]. Science, 1976, 192:1189-1202. [37] Martin J C, Mark B D. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol[J]. Soil Biology&Biochemistry, 1996, 28(9):1191-1199. [38] 袁道先. 中国岩溶学[M]. 北京:地质出版社, 1993. [39] Stuiver M, Braziunas T F, Becker B. Atmospheric 14C and centry-scale solar oscillation[J]. Nature, 1989, 338: 405-408. [40] Cai B G, Edwards R L, Cheng Hai, et al. A dry episode during the Younger Dryas and centennial-scale weak monsoon events during the early Holocene: A high-resolution stalagmite record from southeast of the Loess Plateau, China[J]. Geophysical Research Letters. 2008, 35(2): L02075, doi: 10.1029/2007GL030986. [41] Qian C, Zhou T J. Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900-2010[J]. Journal of Climate,2014(4):1209-1222, doi: 10.1175/JCLI-D-13-00235.1. [42] 覃嘉铭,袁道先,林玉石,等. 公元八世纪以来贵州荔波石笋高分辨率的气候变化记录[J]. 中国岩溶, 2008, 27(3): 266-272. [43] Solanki S K, Ksoskin I G, Kromer B, et al. Unusual activity of the Sun during recent decades compared to the previous 11,000 years[J].Nature, 2004, 431(7012): 1084-1087.
点击查看大图
计量
- 文章访问数: 1923
- HTML浏览量: 332
- PDF下载量: 1461
- 被引次数: 0