Variation of inorganic carbon flux in the middle and downstream of the Lijiang river
-
摘要: 为讨论岩溶地表河中等流域尺度无机碳通量的动态变化过程及其影响因素,于2014年1月至12月对漓江流域桂林断面及阳朔断面河水进行为期一个水文年的采样观测,每月定期采样分析。结果表明,这个过程主要受水循环过程控制,除岩溶水化学特征沿途发生变化之外,水体SIc和SId值也逐渐偏正,溶蚀能力逐渐降低,所产生的无机碳通量仍然不断增加,且呈现出旱季低雨季高的特征。通过计算,桂林断面无机碳通量为7.42×107kgCO2·a-1,阳朔断面为27.9×107kgCO2·a-1,其中桂林断面碳酸盐岩风化所产生的无机碳通量和硅酸盐岩风化所产生的无机碳通量分别占总通量的72.67%和5.21%,阳朔断面分别占87.51%和2.89%,表明硅酸盐岩风化的贡献率沿途不断减小,碳酸盐岩风化的贡献率不断增加。桂林断面以上流域碳汇强度为2.69×104kgCO2·km-2·a-1,桂林到阳朔断面流域碳汇强度为9.89×104 kgCO2·km-2·a-1,相差近5倍,除沿途大气降水、支流补给、水生生物可能产生的有机碳埋藏等原因外,外源水补给所形成的混合溶蚀作用对岩溶区无机碳通量的增加起着不可忽视的作用。Abstract: Water samples of the Lijiang river were collected every month from January 2014 to December 2014 at Guilin and Yangshuo hydrological sections to study the dynamic response process of inorganic carbon flux and its influencing factors in the karst surface river. The results show that the hydrochemical characteristics of the karst river change downstream and the SIc and SId values are increasing as well. Meanwhile, the inorganic carbon flux also increased, with the higher in the wet season and the lower in the dry season, indicating the process was controlled by the hydrological cycle. The inorganic carbon flux was calculated to be 7.42×107 kgCO2·a-1 in Guilin section and 27.9×107 kgCO2·a-1 in Yangshuo section, respectively. The inorganic carbon flux formed by the weathering of carbonate and silicate rocks accounts for 72.67% and 5.21% of the total inorganic carbon flux, respectively, at Guilin section, while it accounts for 87.51% and 2.89% at Yangshuo section, indicating that the proportion of silicate rock weathering is decreasing along the river course while that of carbonate rock increases. The carbon sink intensity of Guilin section is 2.69×104 kgCO2·km-2·a-1 while it is 9.89×104 kgCO2·km-2·a-1 at Yangshuo section, which is 5 times that of Guilin section. Besides precipitation, branch river recharge and the organic carbon accumulation of aquatic organisms, the mixed corrosion of allogenic recharge is also a major reason for the increase of inorganic carbon flux in the karst areas.
-
Key words:
- Lijing river /
- inorganic carbon flux /
- dynamic response process /
- influencing factors /
- carbonate rock
-
[1] Ciais P,Sabine C,Bala G,et al. Carbon and other biogeochemicalcycles[M]∥Stocker T F,Qin D,Plattner G K,et al.eds. Climate Change 2013:The Physical Science Basis.Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge,United Kingdom and NewYork,NY,USA:Cambridge University Press,2013:465-570. [2] 蒲俊兵,蒋忠诚,袁道先,等. 岩石风化碳汇研究进展:基于IPCC第五次气候变化评估报告的分析[J].地球科学进展,2015,30(10):1081-1090. [3] 刘再华.岩石风化碳汇研究的最新进展和展望[J].科学通报,2012,57(Z1):95-102. [4] Berner R A,Lasaga A C,Garrels R. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon-dioxide over the past 100 million years[J]. American Journat of Science,1983,289(7):641-683. [5] Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science,1987,287(5):401-428. [6] 章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶,2011,30(4):368-371. [7] 袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘,1997,4(1-2):17-25. [8] Montety V D,Martin J B,Cohen M J,et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology,2011,283(1-2):31-43. [9] Zhang Z C,Lian B,Hou W G,et al. Bacillus mucilaginosus can capture atmospheric CO2 by carbonic anhydrase[J]. African Journal of Microbiology Research,2011,5(2):106-112. [10] Probst J L,Mortatti L,Tardy Y. Carbon river fluxes and weathering CO2consumption in the Congon and Amazon river basins [J]. Applied Geochemistry,1994,9(1):1-13. [11] 于奭,杜文越,孙平安,等. 亚热带典型河流水化学特征、碳通量及影响因素[J] . 水文,2015,35(04):33-41. [12] Martin J B. Carbonate minerals in the global carbon cycle[J]. Chemical Geology,2017,449:58-72. [13] Cai W J,Guo X H,Chen T,et al. A comparative overview of weathering in tensity and HCO3 flux in the world’s major rivers with emphasis on the Changjiang,Huanghe,Zhujiang(Pearl) and Mississippi rivers [J]. Continental Shelf Research,2008,28(12),1538-1549. [14] Downing J P,Meybeck M,Orr J C,et al. Land and water interface zones[J]. Water,Air & Soil Pollution,1993,70(1):123-137. [15] Yuan D X,Zhang C. Karst processes and the carbon cycle. In final report of IGCP 379[R]. Being: Geological Publishing House.2002. [16] 曹建华,杨慧,康志强. 区域碳酸盐岩溶蚀作用碳汇通量估算初探:以珠江流域为例[J]. 科学通报,2011,56(26):2181-2187. [17] Haryono E,Danardono D,Mulatsih S,et al. The Nature of Carbon Flux in Gunungsewu Karst,Java-Indonesia[J]. Acta Carsologica,2016,45(2):173-185. [18] Zhang C,Wang J,Yan J,et al. Diel cycling and flux of HCO3 in a typical karst spring-fed stream of southwestern China[J]. Acta Carsologica,2016,45(2):107-122. [19] 张红波,何师意,闫志为,等. 岩溶区河流洪水过程中的碳汇动态变化:以桂林漓江为例[J] . 桂林理工学院学报,2012,32(4):512-518. [20] 唐文魁,陶贞,高全洲,等. 桂江主要离子及溶解无机碳的生物地球化学过程[J]. 环境科学,2014,35(6):2099-2107. [21] 周秀平,黄伟军,王文圣. 桂江流域径流变化特性分析[J].广西水利水电,2008(1):22-25. [22] Palmer A N.Dynamics of cave development by allogenic water[J].Speleogenesis & Evolution of Karst Aquifers,2003,1(1):14-32. [23] Gaillardet J,Dupré B,Louvat P,et al. Global silicate weathering and CO2consumption rates deduced from the chemistry of large rivers [J]. Chemical Geology,1999,159(1-4):3-30. [24] Wigley T M L. WATSPEC:A computer program for determining equilibrium speciation of aqueous solutions[J]. London:British Geomorphological Research Group,1977:1-48. [25] 黄芬,唐伟,汪进良,等. 外源水对岩溶碳汇的影响:以桂林毛村地下河为例[J]. 中国岩溶,2011,30(4):417-421. [26] 原雅琼,何师意,于奭,等. 柳江流域柳州断面水化学特征及无机碳汇通量分析[J]. 环境科学,2015,36(7):2437-2445. [27] Bouillon S ,Yambélé A ,Spencer R G M,et al. Organic matter sources,fluxes and greenhouse gas exchange in the Oubangui River(Congo River Basin)[J] . Biogeosciences Discussions,2012,9(6):63-108. [28] 刘丛强. 生物地球化学过程与地表物质循环:西南喀斯特流域侵蚀与生源要素循环[M]. 北京:科学出版社,2007:312. [29] Li S L,Liu C Q,Li J,et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical kartic catchment of Southwest China:Isotopic and chemical constraints[J]. Chemical Geology,2010,277(3-4):301-309. [30] 姚小红,黄美元,高会旺,等. 沿海地区海盐和大气污染物反应的致酸作用[J]. 环境科学,1998,19(3):22-27. [31] 张红波,于奭,何师意,等. 桂林岩溶区大气降水的化学特征分析[J]. 中国岩溶,2012,31(3):289-295. [32] 沈照理,朱婉华,钟佐燊. 水文地球化学基础[M]. 北京:地质出版社,1993:68-69. [33] 刘丛强,蒋颖魁,陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学,2008,37(4):404-414. [34] 北村守次,曾毅强. 根据硫稳定同位素比值推断日本石川县降水中硫酸根离子的来源[J]. 地质地球化学,1995(6):48-56. [35] Liu Z H ,Dreybrodt W,Wang H J. A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews,2010,99(3):162-172. [36] 李亮. 潮田河流域(岩溶)地质碳汇过程及通量估算研究[D]. 北京:中国地质科学院,2013. [37] 陈波,杨睿,刘再华,等. 水生光合生物对茂兰拉桥泉及其下游水化学和δ13CDIC昼夜变化的影响[J]. 地球化学,2014,43(4):375-385. [38] 孙平安,于奭,莫付珍,等. 不同地质背景下河流水化学特征及影响因素研究:以广西大溶江、灵渠流域为例[J]. 环境科学,2016,37(1):123-131. [39] 郑洁. 水生植物生物地球化学行为对岩溶碳汇的影响研究[D].西南大学,2014. [40] 刘再华,吴孔运,汪进良,等. 非岩溶流水中碳酸盐岩试块的侵蚀速率及其控制因素:以湖南郴州礼家洞为例[J]. 地球化学,2006,35(1):103-110. [41] Liu Z H,Dreybrod W. Dissolution kinetics of calcium carbonate minerals in H2OCO2 solutions in turbulent flow:The role of the diffusion boundary layer and the slow reaction H2O+CO2→H++HCO3[J]. Geochim Et Cosmochim Acta,1997,61(14):2879-2889. [42] 刘再华. 碳酸盐岩岩溶作用对大气CO2沉降的贡献[J]. 中国岩溶,2000,19(4):293-300.
点击查看大图
计量
- 文章访问数: 2167
- HTML浏览量: 311
- PDF下载量: 999
- 被引次数: 0