The response processes of moisture at soil profile to precipitation in typical karst hillslopes
-
摘要: 为揭示岩溶石山山坡降雨入渗补给机制,选取典型岩溶石山山坡土壤剖面为研究对象,于2015年7-10月期间对不同深度土壤水分进行高分辨率连续监测,研究典型场雨条件下土壤剖面水分对降雨的响应过程,分析土壤剖面水分的动态变化规律及其可能影响因素。研究结果表明:土壤剖面水分对降雨的响应受前期土壤含水量、降雨量、降雨强度的影响,还与土壤所处的地形地貌有关;表层土壤水分对首次次降雨响应的滞后时间与前期土壤含水量有关,响应时间在0.5~4.75 h之间,旱季响应时间比雨季长;降雨阈值是引起土壤水分降雨响应的重要条件,旱季6 mm降雨量是土壤水分响应的降雨阈值。当降雨量补充土壤水分亏缺后,土壤剖面水分对降雨响应迅速,响应时间最小为0.25 h,不同深度土壤水分对降雨的响应时间一致,说明下层土壤水分可能受到优先流或侧向径流补给影响。土壤含水量的变化幅度随土层深度的增加而减小,不同深度土壤水分变化主要受土壤-大气界面、土壤-植被、土壤-基岩界面控制下的气候条件、植被蒸散发和介质渗透性差异影响。Abstract: To reveal the response processes of the moisture at soil profile to precipitation events, high-resolution monitoring has been conducted to estimate the dynamic change and the factors that affect the soil profile moisture. The purpose of this study was to identify the rainfall infiltration mechanisms in karst hillslope areas. The results indicate that the response of soil profile moisture to precipitation is influenced by previous soil moisture, rainfall amount, rainfall intensity and topographic condition. The resident time of the first soil moisture response is related to previous soil moisture content, which ranges from 0.5-4.75 h, characterized by significant seasonal differences. A threshold rainfall amount exists for producing an increase of soil moisture. The 6 mm threshold is required to activate soil moisture response in dry seasons. The response time is almost synchronous, approximately 0.25 h, when the soil moisture deficit is overcome. These results illustrate that the deeper soil moisture is probably recharged by preferential flow or lateral flow. The magnitude of soil moisture variation decreases with the increase of soil depth, which is related to the climate condition, evaporation and medium permeability differences controlled by communicating with the interfaces of soil-atmosphere, soil-vegetation, and soil-bedrock.
-
Key words:
- soil profile moisture /
- precipitation response /
- threshold /
- response time /
- prior soil moisture
-
[1] 袁道先,蔡桂鸿. 岩溶环境学[M].重庆: 重庆出版社,1988:4-18. [2] 陈洪松,傅伟,王克林,等. 桂西北岩溶山区峰丛洼地土壤水分动态变化初探[J]. 水土保持学报,2006, 20(4): 136-139. [3] 陈洪松,聂云鹏,王克林. 岩溶山区水分时空异质性及植物适应机理研究进展[J]. 生态学报, 2013, 33(2):317-326. [4] Kim S, Sun H, Jung S. Configuration of the relationship of soil moisture for vertical soil profiles on a steep hillslope using a vector time series model[J]. Journal of Hydrology, 2011, 399, 353-363. [5] Morbidelli R, Saltalippi C, Flammini A, et al. Soil water content vertical profiles under natural conditions: matching of experiments and simulations by a conceptual model[J]. Hydrological Processes, 2014, 28, 4732-4742. [6] 张继光,陈洪松,苏以荣,等. 喀斯特地区典型峰丛洼地表层土壤水分空间变异及合理取样数研究[J]. 水土保持学报,2006, 20(2): 114-117. [7] 王家文,周跃,肖本秀,等. 中国西南喀斯特土壤水分特征研究进展[J].中国水土保持,2013,(2):37-41. [8] 张川,张伟,陈洪松,等. 喀斯特典型坡地旱季表层土壤水分时空变异性[J]. 生态学报,2015, 35(19): 6326-6334. [9] 张继光,陈洪松,苏以荣,等. 喀斯特山区洼地表层土壤水分的时空变异[J]. 生态学报,2008, 28(12): 6334-6343. [10] Heathman G C, Larose M, Cosh M H, et al. Surface and profile soil moisture spatio-temporal analysis during an excessive rainfall period in the Southern Great Plains, USA[J]. Catena, 2009, 78, 159-169. [11] Gao L, Shao M G, Peng X H, et al. Spatio-temporal variability and temporal stability of water contents distributed within soil profiles at a hillslope scale[J]. Catena, 2015, 132, 29-36. [12] 王孟本,李洪建. 晋西北黄土区人工林土壤水分动态的定量研究[J]. 生态学报,1995, 15(2):178-184. [13] 张继光,苏以荣,陈洪松,等. 典型岩溶洼地土壤水分的空间分布及影响因素[J]. 生态学报,2014, 34(12): 3405-3413. [14] Wilson D J, Western A W, Grayson R B, et al. Spatial distribution of soil moisture over 6 and 30 cm depth, Mahurangi river catchment, New Zealand[J]. Journal of Hydrology, 2003, 276, 254-274. [15] Liu B J, Chen C L, Lian Y Q, et al. Long-term change of wet and dry climatic conditions in the southwest karst area of China[J]. Global and Planetary Chang, 2015, 127,1-11. [16] Jasper K, Calanca P, Fuhrer J. Changes in summertime soil water patterns in complex terrain due to climatic change[J]. Journal of Hydrology, 2006, 327,550-563. [17] 王磊,文军,韦志刚,等. 中国西北区西部土壤湿度及其气候响应[J]. 高原气象,2008, 27(6):1257-1266. [18] 刘宏伟, 余钟波, 崔广柏. 湿润地区土壤水分对降雨的响应模式研究[J]. 水利学报, 2009 (7): 822-829. [19] Yuan D X, Drogue C, Dai A D, et al. Hydrology of the karst aquifer at the Experimental Site of Guilin in Southern China[J]. Journal of Hydrology, 1990, 115, 285-296. [20] 陈国富,姜光辉,周文亮,等. 岩溶石山区坡地土壤剖面水分与蒸发特征[J]. 中国岩溶,2013, 32(1): 73-78. [21] 袁道先,戴爱德,蔡五田,等. 中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型的研究:以桂林丫吉村为例[M]. 桂林: 广西师范大学出版社,1996:1-5. [22] 何师意,徐胜友,张美良. 岩溶土壤中CO2浓度、水化学观测及其与岩溶作用关系[J]. 中国岩溶,1997, 16(4):319-323. [23] 吕保樱,刘再华,廖长君,等. 水生植物对岩溶水化学日变化的影响:以桂林岩溶水文地质试验场为例[J].中国岩溶,2006, 25(4):335-340. [24] 潘根兴,孙玉华,滕永忠,等. 湿润亚热带峰丛洼地岩溶土壤系统中碳分布及其转移[J]. 应用生态学报,2000,11(1):69-72. [25] 陶于祥,潘根兴,孙玉华,等. 土壤有机碳地球化学及其与岩溶作用的关系:以桂林丫吉村岩溶试验场为例[J]. 火山地质与矿产,1998, 19(1):40-46. [26] 何师意,冉景丞,袁道先,等. 不同岩溶环境系统的水文和生态效应研究[J]. 地球学报,2001, 22(3):265-270. [27] 曹建华,潘根兴,袁道先,等. 桂林岩溶洼地生态系统中大气CO2动态及环境意义[J]. 地质论评,1999,45(1):105-111. [28] 李为,余龙江,袁道先,等. 西南岩溶生态系统土壤微生物的初步研究[J]. 生态学杂志,2004, 23(2):136-140. [29] 李为,吴耿,余龙江,等. 桂林岩溶试验场不同地貌部位黄荆蒸腾作用的比较研究[J]. 武汉植物学研究,2007, 25(3):316-319. [30] 杨启红, 陈丽华, 张富, 等. 土壤水分变异对降雨和植被的响应[J]. 北京林业大学学报,2008, 30(2): 88-95. [31] Wu W R, Geller M A, Dickinson R E. The response of soil moisture to long-term variability of precipitation[J]. Journal of Hydrometeorology, 2002, 3, 604-613. [32] Mahmood R, Littell A, Hubbard K G, et al. Observed data-based assessment of relationships among soil moisture at various depths, precipitation, and temperature[J]. Applied Geography, 2012, 34, 255-264. [33] 王俊,刘文兆,胡梦珺. 黄土丘陵区小流域土壤水分时空变异[J].应用生态学报,2008, 19(6): 1241-1247. [34] 赵荣玮,张建军,李玉婷,等. 晋西黄土区人工林地土壤水分特征及其对降雨的响应[J].水土保持学报,2016, 30(1): 178-183. [35] 张川,陈洪松,聂云鹏,等. 喀斯特地区洼地剖面土壤含水率的动态变化规律[J].中国生态农业学报,2013, 21(10): 1225-1232. [36] 胡学平,王式功,许平平,等. 2009-2013年中国西南地区连续干旱的成因分析[J]. 气象,2014, 40(10): 1216-1229.
点击查看大图
计量
- 文章访问数: 1691
- HTML浏览量: 334
- PDF下载量: 1136
- 被引次数: 0