Characteristics of Kuznets curve to the relationship between construction land expansion and carbon emission intensity in different functional areas of Chongqing
-
摘要: 文章对重庆市五大功能区1998-2013年的土地利用变更数据调查和能源消耗数据进行分析,运用库兹涅茨曲线模型研究了重庆市五大功能区16年间建设用地扩张与碳排放效应之间的内在关系。结果表明:(1)重庆市建设用地扩张与碳排放强度之间的回归模型关系呈倒U型库兹涅茨曲线关系,且拐点即将到来;(2)都市功能核心区、都市功能拓展区建设用地与碳排放强度之间的关系呈倒U型库兹涅茨曲线关系;(3)城市发展新区建设用地与碳排放强度之间的关系呈一次线性关系,显示出区域产业结构调整和土地利用集约水平的初级特征;(4)渝东北生态涵养区建设用地与碳排放强度之间呈正U型二次曲线关系,土地集约利用水平亟待提高。Abstract: Chongqing is situated in the upper stream of Yangtze River and lies in the southeast of Sichuan Basin, southwest of China. In September 2013,Chongqing has been divided into five metro-functional areas in the third plenum of the fourth Committee, which is closely related to the economic development of Chongqing. Studying the relationship between construction land expansion and carbon emission can provide some scientific evidences for the optimization of land resources allocation, industrial restructuring and sustainable development. It analysed the relationship between construction land expansion and carbon emission from 1998 to 2013 by using Kuznets curve fitting technology. Results show that ,(1) In Chongqing, the Kuznets curve of the construction land expansion and carbon emission intensity generally presents an inverted U-shape relation, which shows that current Chongqing is quite close to the flex point in terms of urban economic development; (2) The Kuznets curve in core area of urban function and developing area of urban function shows an inverted U-shape relation; (3) The Kuznets curve in the newly developed district shows single linear relationship, which implies the primary features of regional industrial structure adjustment and the intensity level of land utilization; (4) The Kuznets curve in biological conservation area of the northeast Chongqing shows a U-shape quadratic curve indicating the relationship between construction land expansion and carbon emission intensity and the intensity level of land utilization remains to be improved.
-
[1] Kuznets S. Economic growth and income equality[J]. American Economic Review, 1955, 45(1):1-28. [2] Masaaki Kijima,Katsumasa Nishide, Atsuyuki Ohyama. Economic models for the environmental Kuznets curve: A survey[J]. Journal of Economic Dynamics & Control, 2010,34(7):1187-1201. [3] Jie He, Patrick Richard. Environmental Kuznets curve for CO2 in Canada[J].Ecological Economics,2010,69(5):1083-1093. [4] Iwata H, Okada K, Samreth S. Empirical study on the environmental Kuznets curve for CO2, in France: The role of nuclear energy[J]. Energy Policy,2009,38(8):4057-4063. [5] 林伯强,蒋竺均.中国二氧化碳的环境库兹涅茨曲线预测及影响因素分析[J].管理世界,2009,(4):27-36. [6] 刘扬,陈劭锋.基于IPAT方程的典型发达国家经济增长与碳排放关系研究[J].生态经济,2009,(11):28-30. [7] 许广月,宋德勇.中国碳排放环境库兹涅茨曲线的实证研究:基于省域面板数据[J].中国工业经济,2010,(5):37-47. [8] 陈劭锋,刘扬,邹秀萍,等.二氧化碳排放演变驱动力的理论与实证研究[J].科学管理研究,2010,28(1):43-48. [9] 张梅,赖力,黄贤金,等.中国区域土地利用类型转变的碳排放强度研究[J].资源科学,2013,35(4):792-799. [10] 黄奇波,覃小群,刘朋雨,等.北方不同植被下土壤岩石试片的溶蚀速率及碳汇分析:以山西汾阳地区为例[J].中国岩溶,2013,32(3):258-265. [11] 曾思博,蒋勇军.土地利用对岩溶作用碳汇的影响研究综述[J].中国岩溶,2016,35(2):153-163. [12] 覃小群,蒙荣国,莫日生.土地覆盖对岩溶地下河碳汇的影响:以广西打狗河流域为例[J].中国岩溶,2011,30(4):372-378. [13] 方精云,郭兆迪,朴世龙,等.1981~2000年中国陆地植被碳汇的估算[J].中国科学D辑:地球科学,2007,37(6):804-812. [14] 苏雅丽,张艳芳.陕西省土地利用变化的碳排放效益研究[J].水土保持学报,2012,25(1):152-156. [15] 顾凯平,张坤,张丽霞.森林碳汇计量方法的研究[J].南京林业大学学报:自然科学版,2008,32(5):105-109. [16] Cai Zucong, Kang Guoding, Tsuruta H,et al.Estimate of CH4 emissions from year-round flooded rice field during rice growing season in China [J].Pedosphere,2005,15(1):66-71. [17] 何勇.中国气候陆地生态系统碳循环研究[M].北京:气象出版社,2006. [18] 徐国泉,刘则渊,姜照华.中国碳排放的因素分解模型及实证分析:1995-2004[J].中国人口?资源与环境,2006,16(6):158-161. [19] 刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(50):773-740. [20] 吴玉鸣.广西生态足迹与能源消费的库兹涅茨曲线分析[J].中国人口?资源与环境,2010,20(11):30-35. [21] 官冬杰,苏维词.基于GIS重庆岩溶地区生态环境脆弱度评价[J].中国岩溶,2006,25(3):211-218. [22] 张润森,濮励杰,文继群,等.建设用地扩张与碳排放效应的库兹涅茨曲线假说及验证[J].自然资源学报,2012(5):723-733.
点击查看大图
计量
- 文章访问数: 1566
- HTML浏览量: 264
- PDF下载量: 932
- 被引次数: 0