Application ofbidirectional labeling method to quantifying carbon utilization in microalgae
-
摘要: 2015年8月,在人工温室培养环境下,以蛋白核小球藻为实验材料,通过向培养液中添加两种标记δ13C的碳酸氢钠来培养微藻,每天定时监测培养液的无机碳稳定同位素组成和微藻生物量,并测定最终获得的微藻藻体的有机碳稳定同位素组成,运用双同位素示踪模型,通过无机碳稳定同位素和有机碳稳定同位素两种方法,分别成功计算出了微藻利用不同碳源的份额,实验结果分别为:添加5.0 mmol/L碳酸氢钠条件下是0.19、添加10.0 mmol/L条件下是0.37、而添加20.0 mmol/L条件下是0.57。并对这两种算法进行了分析。定量计算微藻对不同无机碳源的利用份额,在岩溶湖泊碳循环研究领域具有重要意义。Abstract: August 2015, the Chlorella pyrenoidosawas cultivated in a greenhouse with different inorganic carbons(NaH13CO3 with different δ13C values added) in the culture medium.The δ13C of inorganic carbon in the medium and the biomass of the microalgae were detected on a daily basis. In the meantime, the organic stable carbon isotope compositions of the microalgae was also measured. The proportion of the added inorganic carbon used by microalgae was quantified by comparing their stable carbon isotope compositions using the bidirectional labeling method (NaH13CO3 with different δ13C values was added).This study compared respectively both inorganic carbon and organic carbon of the stable carbon isotope compositions. The results are as follows, it is 0.19 under 5.0 mmol/L NaHCO3, 0.37 under 10.0 mmol/L NaHCO3, and 0.57 under 20.0 mmol/L NaHCO3. At last, we analyzed the two methods for quantifying the carbon sources in algae. It is very important to calculate the proportion of different inorganic carbon in the carbon cycle research in karst lakes.
-
Key words:
- inorganic carbon utilization /
- stable carbon isotope /
- microalgae
-
[1] Forster P, Ramaswamy V, Artaxo P, et al. Changes in atmospheric constituents and in radiative forcing [M] // Climate change, Cambridge, Cambridge University Press, 2007: 131-234. [2] 王协琴. 温室效应和温室气体减排分析[J]. 天然气技术, 2008(6): 53-58. [3] Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components [J]. Science, 1998, 281: 237-240. [4] Carpenter S R, Fisher S G, Grimm N B, et al. Global change and freshwater ecosystems [J]. Annual Review of Ecology and Systematics, 1992, 23: 119-139. [5] Wrona F J, Prowse T D, Reist J D, et al. Climate change effects on aquatic biota, ecosystem structure and function [M]. AMBIO: A Journal of the Human Environment, 2006, 35: 359-369. [6] Moazami-Goudarzi M, Colman B. Inorganic carbon acquisition in two green marine stichococcus species [J]. Plant, Cell & Environment, 2011, 34: 1465-1472. [7] Moulin P, Andría J R, Axelsson L, et al. Different mechanisms of inorganic carbon acquisition in red macroalgae (rhodophyta) revealed by the use of TRIS buffer [J]. Aquatic Botany, 2011, 95: 31-38. [8] Ray S, Klenell M, Choo K S, et al. Carbon acquisition mechanisms in chara tomentosa[J]. Aquatic Botany, 2003, 76: 141-154. [9] 李海涛,吴沿友,谢腾祥. 微藻利用不同无机碳途径的定量方法[J]. 地球与环境, 2014,42(1):116-121. [10] Burkhardt S, Riebesell, U, Zondervan, I. Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton [J]. Geochimica et Cosmochimica Acta, 1999, 63(22): 3729-3741. [11] Wu Y Y, Xu Y, Li H T, et al. Effect of acetazolamide on stable carbon isotope fractionation in Chlamydomonas reinhardtii and Chlorella vulgaris [J]. Chinese Science Bulletin, 2012.57: 786-789. [12] 门玉洁, 胡洪营, 李锋民. 芦苇化感组分对斜生栅藻 Scenedesmus obliquus生长特性的影响[J]. 生态环境,2006,15(5):925-929. [13] 郭颖娜,孙卫. 蛋白质含量测定方法的比较[J]. 河北化工, 2008, 31(4): 36-37. [14] Atekwana E A, Krishnamurthy R V. Seasonal variations of dissolved inorganic carbon and 13C of surface waters: application of a modified gas evolution technique [J]. Journal of Hydrology, 1998, 205(3): 265-278. [15] Chen Z, Cheng H M, Chen X W. Effect of Cl- on photosynthetic bicarbonate uptake in two cyanobacteria Microcystis aeruginosa and Synechocystis PCC6803[J]. Chinese Science Bulletin, 2009, 54: 1197-1203.
点击查看大图
计量
- 文章访问数: 1477
- HTML浏览量: 290
- PDF下载量: 995
- 被引次数: 0