Dynamic monitoring of vegetation and the impact of land use/cover change in the topical karst rocky desertification areas
-
摘要: 基于2001至2014年MOD13Q1数据集、数字地面高程数据以及中梁山地区多期土地覆盖数据,进行植被覆盖度(FVC)估算及其变化趋势模拟、多期土地利用转移矩阵分析,探讨中梁山地区植被覆盖度动态变化特征、土地利用的时空变化特征以及土地利用和地形同植被覆盖度间的响应机制。研究结果表明:中梁山76.69%的区域为植被改善区,退化区面积占总面积的10.12%,存在明显的改善趋势,生态情况得到良好恢复;人类活动对中梁山区域影响方式主要表现为耕地向林地和建设用地转化的特点;植被生长趋势的空间异质性与坡度有关,坡陡区植被改善面积约为退化面积的14倍,缓坡区仅为7倍;植被退化现象受人览活动的影响较大,而人类晃动对植被改善影响较小,植被改善主要与植物的自然生长演替有关。Abstract: The study area is located in the Zhongliang mountains of karst areas in southwestern China. Its mean annual temperature is 18 ℃, average annual rainfall is about 1,100 mm and height is about 500 m to 700 m. The terrain in the north side is higher than the south with steep slopes prone to soil erosion. Taking Zhongliang town for example, its total area is 4.75 km2, of which barren mountains account for 1 km2. As rocky desertification results in soil productivity sharply decline, regional economic develops slowly with hostile survival condition. Based on the dataset of MOD13Q1 from 2001 to 2014, digital terrain elevation data and the multi-period land use data, the Fractional Vegetation Cover (FVC) degree was estimated with the dimidiate pixel model in the topical karst rocky desertification areas. The vegetation cover variation tendency was simulated by the linear regression. We carried out the transformation matrix of land use, made comparison of land use changes before and after management, and analyzed the statistical characteristics of land use changes in vegetation change regions. Then the spatial-temporal variation characteristics of FVC and land use and the response mechanism between FVC and land use, terrain were discussed in detail.The results indicate that the percentage of areas with increasing vegetation cover is 76.69, while the area with decreasing vegetation cover accounts for 10.12% of the total area. There is obvious improvement tendency and the ecological regime also recovers greatly. The transformation matrix between 2005 and 2014 shows that human beings activity is the main driving factor and the cultivated land to woodland and construction land are the main transformation types in Zhongliang mountains. The phenomenon of vegetation degeneration has been affected extremely by human activity. The vegetation improvement, barely influenced by human beings activity, is mainly related to the natural restoration.
-
[1] 国家林业局.中国石漠化状况公报[N].中国绿色时报,2012-06-18(3). [2] 杨苏新,张霞,帅通,等. 基于混合像元分解的喀斯特石漠化地物丰度估测[J]. 遥感技术与应用,2014,29(5):823-832. [3] 盛茂银,刘洋,熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报,2013,33(19):6303-6313. [4] 陈圣子,周忠发,闫利会.基于网格GIS的喀斯特石漠化治理过程中生态系统健康变化诊断:以贵州花江示范区为例[J].中国岩溶,2015,34 (3):266-273. [5] 李阳兵,王世杰,李瑞玲,等. 花江喀斯特峡谷地区石漠化成因初探[J]. 水文地质工程地质,2004,(6):37-42. [6] 苏维词,杨华,李晴,等. 我国西南喀斯特山区土地石漠化成因及防治[J]. 土壤通报,2006,37(3):447-451. [7] 马士彬,张勇荣,安裕伦.基于Logistic-CA-Markov模型的石漠化空间变化规律研究[J].中国岩溶,2015,34(6):591-598. [8] 熊康宁,黎平,周忠发,等.喀斯特石漠化的遥感—GIS典型研究: 以贵州省为例[M]. 北京:地质出版社,2002. [9] 胡宝清,严志强,廖赤眉,等. 喀斯特石漠化与地质-生态环境背景的空间相关性分析:以广西都安瑶族自治县为例[J]. 热带地理,2004,24(3):226-230. [10] 李阳兵,王世杰,周梦维,等. 不同空间尺度下喀斯特石漠化与坡度的关系[J]. 水土保持研究,2009,16(5):70-72,77. [11] 姚永慧. 中国西南喀斯特石漠化研究进展与展望[J]. 地理科学进展,2014,33(1):76-84. [12] 曹建华,袁道先,童立强. 中国西南岩溶生态系统特征与石漠化综合治理对策[J].草业科学,2008,25(9):40-50. [13] 肖华,熊康宁,张浩,等. 喀斯特石漠化治理模式研究进展[J]. 中国人口?资源与环境,2014(S1):330-334. [14] Eva N, John W, Anthony J. The stability of vegetation boundaries and the propagation of desertification in the American Southwest: A modelling approach. Ecological Modelling,2007,208(2-4):96-101. [15] 穆少杰,李建龙,陈奕兆,等. 2001-2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报,2012,67(9):1255-1268. [16] 陈效逑,王恒.1982-2003年内蒙古植被带和植被覆盖度的时空变化[J].地理学报,2009,64(1):84-94. [17] 时忠杰,高吉喜,徐丽宏,等.内蒙古地区近25年植被对气温和降水变化的影响[J].生态环境学报,2011,20(11):1594-1601. [18] 许旭,李晓兵,梁涵玮,等.内蒙古温带草原区植被盖度变化及其与气象因子的关系[J].生态学报,2010,30(14):3733-3743. [19] 周洪建,王静爱,岳耀杰,等.人类活动对植被退化/恢复影响的空间格局:以陕西省为例[J].生态学报,2009,29 (9):4847-4856. [20] 刘荣高,刘洋,刘纪远.MODIS科学数据处理研究进展[J].自然科学进展,2009,19(2):141-147. [21] Ma M G, Veroustraete F. Reconstructing pathfinder AVHRR land NDVI time-series data for the Northwest of China, Advance Space Research, 2006,37(4): 835-840. [22] Holben, B N. Characteristics of maximum-value composite images from temporal AVHRR data. International Journal of Remote Sensing, 1986, 7 (11):1417-1434. [23] Settle J J, Drake N A. Linear Mixing and the estimation of ground cover proportions[J]. International Journal of Remote Sensing, 1993,14(6):1159-1177. [24] Qi J, Marsett R C, Moran M S, et al. Spatial and temporal dynamics of vegetation in the San Pedro River basin area[J]. Agricultural and Forest Meteorology,2000,105(1):55-68. [25] Zhou L, Tucker C, Kaufmann R, et al. Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999 [J]. Journal of Geophysical Research, 2001,106(D17):20069-20083. [26] Bradley C R C. The influence of canopy green vegetation fraction on spectral measurements over native tallgrass prairie [J]. Remote Sensing of the Environment, 2002, 81(1): 129-135. [27] Stow D, Hope A, McGuire D, et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems[J].Remote Sensing of Environment,2004,89(3):281-308. [28] Li X,Lu L, Cheng G D,et al. Quantifying landscape structure of the Heihe River Basin, northwest China using FRAGSTATS. Journal of Arid Environments,2001,48 (4):521-535. [29] Speight J G. Field description of landforms for Australian soil and land surveys[M]. CSIRO Institute of Biological Resources, Division of Water and Land Resources, 1983. [30] 熊平生,袁道先,谢世友.我国南方岩溶山区石漠化基本问题研究进展[J].中国岩溶,2010,29(4):355-362. [31] 全国农业区划委员会.土地利用现状调查技术规程[M].北京:测绘出版社,1984. [32] 刘胜峰,张合平. 长株潭地区耕地压力的时空变化及驱动因素分析[J]. 中国岩溶,2015,34(3):274-280.
点击查看大图
计量
- 文章访问数: 1449
- HTML浏览量: 381
- PDF下载量: 855
- 被引次数: 0