Characteristics of spatial temporal variation of air environment in tourism cave and its cause analysis: A case study of the Dafeng cave in Suiyang county, Guizhou Province
-
摘要: 为探究绥阳大风洞空气环境时空变化的规律及其成因,沿洞道布设10个监测点,并对各点在垂直剖面上(洞道上、中、下部)的温度、湿度和CO2浓度进行为期11个月的监测,结果表明:(1)大风洞空气环境要素(CO2、温度、相对湿度)均呈现出明显的季节变化,大体上CO2、温度和湿度表现为冬季低,夏季高的特点。(2)春、夏、秋季洞内外空气交换较弱,由洞口至洞内深处CO2浓度、湿度逐渐增加,温度逐渐减小,且越往洞内深处,空气交换减弱,各参数变化越稳定;冬季洞内外空气交换作用强,由洞口至洞穴深部,温度变化曲线表现为并无突变点,且洞穴CO2、湿度的垂直变化加大。(3)垂直变化上,春、夏、秋季洞穴CO2浓度、相对湿度差异大,洞底部CO2浓度和相对湿度大多高于洞顶部,但越往洞穴深入,3个环境参数的垂直差异均减小。Abstract: This study is to explore the fact and causes of the spatial and temporal variation of air environment in the Dafeng cave. 10 monitoring points were set up along the horizontal tunnel of Dafeng cave; and CO2 concentration,temperature and relative humidity of each monitoring point had been continuously monitored for a period of 11 months (from October 2015 to August 2016). Through the analysis of these data gained from the cave, its air environment variation can be summarized as follows,(1)The air environment elements (i.e. CO2, temperature, relative humidity) of the tunnel show an obvious seasonal variation. In general, their values are low in winter and high in summer; (2)Due to weak air exchange with the external in the seasons of spring, summer and autumn, the CO2 concentration and humidity gradually increase to the deep in the cave, while the temperature gradually decreases, and all of which stabilize at a certain depth of the cave tunnel owing to very limited cave air exchange with the outside. In winter time, the temperature curve does not indicate the abrupt change, but the CO2 content and humidity fluctuate much in vertical direction from the roof to the bottom; (3)Vertically (from the bottom to the cave roof), the values of CO2 concentration and humidity are different and they are higher at the bottom than those of the cave roof. To the further deep cave these three environmental elements get stabilized.
-
[1] 袁道先,蔡桂鸿.岩溶环境学[M].重庆:重庆出版社,1988:33. [2] 朱德浩.岩溶洞穴成因研究和实验研究综述[J].中国岩溶,1993,12(3):285-291. [3] 程星.滴石形态组合及滴率条件[J].中国岩溶,1990,19(2):119-128. [4] 童晓宁,周厚云,黄颖,等.广东英德宝晶宫CO2浓度的时空变化特征[J].热带地理,2013,33(4):439-443. [5] 章典.贵州喀斯特洞穴的气象特征和气候分带研究[J].中国岩溶,1985,4(1-2):140-147. [6] 周长春,王晓青,孙小银,等.旅游洞穴环境变化监测分析及其影响因素研究:以山东沂源九天洞为例[J].旅游学刊,2009,24(2):81-86. [7] A Bogli.Karst Hydrology and Physical Speleology[M].Berlin:Springer,1978:32-43. [8] 宋林华,杨京蓉,林钧枢,等.浙江瑶林洞风化碳酸钙景观复生试验中CO2吸收动力学研究[J].中国岩溶,1999,18(2):200-206. [9] 张蔷,赵淑艳,赵习方.北京石花洞内CO2的监测与评价[J].中国岩溶,1997,16(4):325-331. [10] 李坡,朱文孝.贵州织金洞的环境监测与评价[C].北京:地震出版社,1994:131-737. [11] 宋林华,韦小宁,梁福源.河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响[J].中国岩溶,2003,22(3):230-235. [12] 王翱宇,蒲俊兵,沈立成,等.重庆雪玉洞CO2浓度变化的自然与人为因素探讨[J].热带地理,2010,30(3):272-277. [13] 蔡炳贵,沈凛梅,郑伟,等.本溪水洞洞穴空气 CO2浓度与温、湿度的空间分布和昼夜变化特征[J].中国岩溶,2009,28 (4):348-354. [14] 杜金娥, 张光生, 王宁.蓬莱仙洞 CO2浓度及温度的变化规律初探[J].中国农学通报,2008,24(3):395-400. [15] 杨晓霞,施俊庄,向旭,等.浅议旅游洞穴灯光植物的危害及防治[J].中国岩溶, 2012,31(4):433-440. [16] 杨晓霞,向旭,袁道先. 喀斯特洞穴旅游研究综述[J].中国岩溶,2007,26(4):367-377. [17] 刘平.贵州绥阳双河洞国家地质公园洞穴基本特征及成因探讨[J].贵州地质,2008,25(4):302-305. [18] 贺 卫,李 坡,车家骧.刍议双河洞穴主要形成特征及演化[J].贵州科学,2001,19(1):71-76. [19] 陈建庚,张英骏.贵州绥阳双河洞系的发育与成因探讨[J].中国岩溶,1994,13(3):247-255. [20] 李坡,贺卫,钱治,等.双河洞地质公园研究[M].贵阳:贵州人民出版社,2008:84. [21] 张蔷,赵淑艳,赵习方.北京石花洞内CO2的监测与评价[J].中国岩溶,1997,16(4):325-331. [22] 王晓青,周长春,孙小银,等.山东沂源九天洞洞穴环境变化监测分析[J].2008,27(1):91-96. [23] Baldini J U L,Baldini L M,McDermott F,et al.Carbon dioxide sources,sinks,and spatial variability in shallow temperate zone caves:Evidence from Ballynamintra Cave,Ireland[J].Journal of Cave and Karst Studies,2006,68(1):4-11. [24] 罗时琴,易武英,李坡.织金洞洞穴环境监测及其影响因素分析[J].贵州科学,2014,32(6):92-96.
点击查看大图
计量
- 文章访问数: 1693
- HTML浏览量: 678
- PDF下载量: 691
- 被引次数: 0