Time lags variance of groundwater level response to precipitation of Jinan karst spring watershed in recent 50 years
-
摘要: 依据近50年降水及年均水位等的差异,将1959-2011年济南岩溶泉域地下水位与降水观测数据划分为若干时段。采用小波变换方法定量分析了泉域地下水位对降水的响应时滞,并采用相关分析讨论了时滞与地下水开采量等的关系。结果表明,(1)泉域地下水位与降水的主周期均为1 a。(2)两种划分方式下,泉域排泄区水位时滞分别为83.44~161.24 d、88.62~150.56 d,径流区水位时滞分别为67.87~81.66 d、76.58~82.21 d,径流区水位时滞明显小于排泄区。(3)依据降水划分的时段,排泄区与径流区均有随年降水减少,水位时滞增加的趋势。(4)依据水位划分的时段,排泄区有随水位降低,时滞增加的趋势,而径流区不明显。(5)泉域水位时滞与泉域地下水开采量、泉群流量等存在相关关系,泉域开采量越大,泉群流量越小,则水位时滞相对越大。上述时滞差异分析,有助于增加地下水位与降水之间的非线性耦合过程的认识,可为地下水位的预报预警提供帮助。Abstract: Recent 50 years, both groundwater level data and precipitation data were devided into several time periods in this paper. The time lags of groundwater levels to precipitation were quantitatively analyzed by using the method of cross wavelet analysis; and the relationships between the time lags and groundwater abstraction etc. were also studied by correlation analysis. The results show that, (1)The main periodicities of both groundwater level and precipitation are 1 a. (2)The time lags of groundwater levels of discharge area are 83.44-161.24 d and 88.62-150.56 d by the two divisions, while the time lags of runoff area are 67.87-81.66 d and 76.58-82.21 d, respectively, which is significantly less than the time lags of discharge area. (3) According to precipitation, a trend that the less the precipitation and the larger the time lag can be concluded in both runoff and discharge areas. (4)Taking into account the groundwater levels, the time lag becomes larger while the groundwater level is lower in discharge area. This case does not occur in runoff area. (5)Correlation relationship is obvious between the time lag and groundwater exploitation and spring discharge. The larger the exploitation and the less the spring discharge, the larger the time lags. Analyzing time lag variances of groundwater levels to precipitation can provide knowledge on their nonlinear coupling processes, which will be benefit to the forecast of groundwater levels.
-
[1] 胡克祯, 张建芝, 邢立亭.基于时间序列分析的地下水动态研究[J].水科学与工程技术, 2011, (5): 32-34. [2] 李平, 卢文喜, 杨忠平.频谱分析法在吉林西部地下水动态预报中的应用[J].水文地质工程地质, 2005, (4): 70-73. [3] 陈皓锐, 王少丽, 高占义, 等.运东平原区1976年以来地下水位变化特征分析[J].灌溉排水学报, 2010, 29(4): 114-118. [4] Tremblay L, Larocque M, Anctil F, et al.Teleconnections and interannual variability in Canadian groundwater levels[J].Journal of Hydrology, 2011, 410(3-4):178-188. [5] 祁晓凡, 杨丽芝, 韩晔, 等.济南泉域地下水位动态及其对降水响应的交叉小波分析[J].地球科学进展, 2012, 27(9): 969-978. [6] 祁晓凡, 李文鹏, 杨丽芝, 等.济南白泉泉域地下水位动态对降水响应的年内时滞分析[J].地球与环境,2015,43(6):619-627. [7] 祁晓凡, 李文鹏, 李海涛, 等.济南岩溶泉域地下水位、降水、气温与大尺度气象模式的遥相关[J].水文地质工程地质,2015,42(6):18-28. [8] Kuss A J M, Gurdak J J.Groundwater level response in U.S.principal aquifers to ENSO, NAO, PDO, and AMO[J].Journal of Hydrology, 2014, 519:1939-1952. [9] Torrence C, Compo G P.A practical guide to wavelet analysis[J].Bulletin of the American Meteorological Society,2010,79(79):61-78. [10] Grinsted A, Moore J C, Jevrejeva S.Application of the cross wavelet transform and wavelet coherence to geophysical time series[J].Nonlinear Processes in Geophysics, 2004, 11(5/6):561-566. [11] Neto O P, Pinto I R C A, Pinto O.The relationship between thunderstorm and solar activity for Brazil from 1951 to 2009[J].Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 98(98):12-21. [12] Shine J M, Handojoseno A M A, Nguyen T N, et al.Abnormal patterns of theta frequency oscillations during the temporal evolution of freezing of gait in Parkinson’s disease [J].Clin Neurophysiol, 2014, 125(3): 569-576. [13] 祁晓凡, 蒋忠诚, 罗为群.典型表层岩溶水系统降水量与泉流量的交叉小波分析[J].地球与环境, 2012, 40(4): 561-567. [14] Adamowski J, Chan H F.A wavelet neural network conjunction model for groundwater level forecasting[J].Journal of Hydrology, 2011, 407(1-4):28-40. [15] 杨丽芝, 李壮, 卫政润, 等.济南城市地质调查报告[R].济南: 山东省地质调查院, 2014. [16] 王振涛, 靳丰山, 贺敬, 等.济南市名泉保护研究报告[R].济南: 山东省地质环境监测总站, 2008. [17] 李文鹏, 郑跃军, 郝爱兵.北京平原区地下水位预警初步研究[J].地学前缘, 2010, 17(6): 166-173. [18] 沈晔, 李海涛, 黎涛, 等.地下水位预测:集合卡尔曼滤波(EnKF)应用概述[J].水文地质工程地质, 2014, 41(1): 21-24.
点击查看大图
计量
- 文章访问数: 1331
- HTML浏览量: 614
- PDF下载量: 668
- 被引次数: 0