Exploration of risk assessment method towards groundwater contamination in karst region: A case study in Disu underground river system basin
-
摘要: 岩溶地下水污染风险评价对岩溶地下水的保护、管理和合理利用具有重要意义。文章总结了近年来国内外地下水污染风险评价方面的研究进展,针对目前评价体系存在的不足,构建了适合岩溶区地下水污染风险评价体系。该方法基于欧洲模式,实现地下水防污性能评价;污染负荷评价则考虑污染物在覆盖层中的衰减过程,利用折减系数实现污染负荷量化;最后,基于GIS空间叠加分析耦合防污性能与污染负荷评价,实现区域地下水污染风险评价。文章以地苏地下河系流域为例,开展岩溶区域地下水污染风险评价,结果表明:区域整体地下水污染风险偏低,地下水中等及以上污染风险区域面积424.41 km2,占研究区总面积的39.03%,主要分布在研究区中东部地苏乡、东庙乡、六也乡局部等人类活动频繁与地苏地下河干流中下游段。地下水污染风险空间分布特征不仅显示了岩性、坡度、岩溶网络发育等自然条件对评价结果的影响,同时也反映了人类活动的影响。地势平缓,岩溶发育程度强烈,加之人类活动频繁是导致区域地下水污染风险较高的原因所在。Abstract: Groundwater contamination risk assessment is of great significance in protecting, managing and reasonably utilizing karst groundwater. In this paper, various methods in regards with groundwater contamination risk assessment were comparatively reviewed. As a result, a new groundwater contamination risk assessment method which is suitable for small karst area was proposed, in view of the disadvantage of the current methods and based on European model which has often been used to assess the groundwater vulnerability in a research area. By considering the contaminant attenuation effect, this research focused on the quantification of the reduction coefficient of contaminant load. Moreover, based on GIS spatial analysis, the assessment of the environmental risk of groundwater contamination in a research area was performed. To verify the suitability of the method developed, a case study was conducted in Disu karst underground river system. The results show that risk of groundwater contamination in the research area is relatively low. The areal size with moderate and high groundwater contamination risk is 424.41 km2, accounting for 39.03% of the total research area. The high-risk areas include Disu town, Dongmiao town, Liuye town, with frequent human activities, and the middle and lower reaches of Disu underground main river stream. Furthermore, for this research it is suggested that the spatial characteristics of the groundwater contamination risk in the areas is affected not only by the natural factors such as lithology, gradient, development degree of karst and etc.,but also by human activities.High groundwater contamination risk of the region is mainly attributed to the gentle terrain slope, dense karst network and strong human activities.
-
[1] 邰托娅,王金生,王业耀,等.我国地下水污染风险评价方法研究进展[J].北京师范大学学报(自然科学版).2012,48(6):648-654. [2] 陆燕,何江涛,王俊杰,等.北京平原区地下水污染源识别与危害性分级[J].环境科学,2012,33(5):1526-1531. [3] 崔学慧,李炳华,陈鸿汉.太湖平原城近郊区浅层地下水中多环芳烃污染特征及污染源分析[J].环境科学,2008,29(7):1806-1810. [4] 王大纯,张人权,史毅虹,等.水文地质学基础[M].北京地质出版社,1995. [5] 袁道先.对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见[J].中国岩溶,2000,19(2):103-108. [6] 袁道先.我国岩溶资源环境领域的创新问题[J].中国岩溶,2015,34(2):98-100. [7] 李志萍,谢振华,林健.地下水污染风险评价指标体系及方法探讨[J].黑龙江水专学报,2010,37(3):115-117. [8] Burkart M R,Kolpin D W,James D E. Assessing groundwater vulnerability to agrichemical contamination in the Midwest US[J]. Water Science and Technology,1999,39(3):103-112. [9] Thaointa A,Hudak P F. Use of geographic information systems for assessing groundwater pollution potential by pesticides in Central Thailand[J]. Environment International,2003,29(1):87-93. [10] 李晨,程星.岩溶地区不同地貌类型地下水抗污染风险评价:以贵州清镇地区为例[J].贵阳学院学报,2015,10(1):55-60. [11] Brian Morris,Stephen forter. Assessment of Groundwater Pollution risk[M/OL]. (2006-05-06). http:// www.lnweb18. worldbank. org/essd/essd.nsf. [12] 申丽娜,李广贺.地下水污染风险区划方法研究[J].环境科学,2010,31(4):918-923. [13] Rabie E B,Kamal T,Khadija A. A contribution of GIS methods to assess the aqu fer vulnerability to contamination:a case study of the Cealcareous Dorsal(Northern Rif,Morocco)[J]. Journal of Water Resource and Protection,2015,7(6):485-495. [14] Mohamed O A,Ahmed R. An integrated GIS and hydrochemical approach to assess groundwater contamination in West Ismailia Area,Egypt[J]. Arabian Journal of Geosciences,2013,6(8):2829-2842. [15] Bartolome A,Nico G,Inaki V,et al. Karst groundwater protection:First application of a Pan-European Approach to vulnerability,hazard and risk mapping in the Sierra de Lí bar (Southern Spain)[J]. Science of the Total Environment,2006,357(1-3):54-73. [16] 孙才志,陈相涛,陈雪姣.地下水污染风险评价研究[J].进展水利水电科学进展,2015,35(5):152-161. [17] Pedreira R,Kallooras A,Pliakas F,et al.Groundwater vulnerability assessment of a coastal aquifer system at River Nestos Eastern Delta,Greece[J].Environmental Earth Sciences,2015,73(10):6387-6415. [18] Recinos N,Kallioras A,Pliaka S,et al. Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers[J]. Environmental Earth Sciences,2015,73(3):1017-1032. [19] 郭高轩,李宇,许亮,等.北京平原区第四系地下水污染风险评价[J].环境科学,2014,35(2):562-568. [20] 张强,蒋勇军,林玉石,等.基于欧洲模型的岩溶地下水防污性能风险性评价[J].人民长江,2009,40(13):51-54. [21] 蓝家程,孙玉川,田萍,等.岩溶地下河流域水中多环芳烃污染特征及生态风险评价[J].环境科学,2014,35(10):3722-3730. [22] 杨庆,陈忠荣,张伟红,等.典型水源地地下水污染风险评价[J].中国环境监测,2013,29(5):22-25. [23] 罗庆,孙丽娜,张耀华.细河流域地下水中多环芳烃污染健康风险评价[J].农业环境科学学报,2011,30(5):959-964. [24] 李志萍,谢振华,邵景力,等.北京平原区浅层地下水污染风险评价[J].评价应用,2013,8(1):43-46. [25] 俞光明,刘红樱,张泰丽,等.杭州市浅层地下水有机污染及其风险初步评价[J].资源调查与环境,2007,28(3):198-204. [26] 张昕,何江涛,王俊杰,等.淮北市岩溶地下水防污性能评价[J].中国岩溶,2010,29(4):372-377. [27] 刘增超,何连生,董军,等.简易垃圾填埋场地下水污染风险评价[J].环境科学研究,2012,25(7):833-839. [28] 胡二邦.环境风险评价实用技术和方法[M].北京:中国环境科学出版社,2000. [29] Foster S S D.Fundamental concepts in aquifer vulnerability,pollution risk and protection strategy[A].van Duijvenbooden W,van Waegenngh H G,Vulnerability of soil and groundwater to pollutions TNO Committee on Hydrogeological Research,Proceedings and Information NO.38[C].The Hague,1987:69-86. [30] Aller L,Bennet T,Lehr J H,et al. Drasitc:A standardized systerm for evaluating groundwater pollution potential using hydrogeological settings[J]. Joumal of the Geotogical Society of India,1987,29(1). [31] Doerfliger N,Jeannin P Y,Zwahlen F. Water vulnerability assessment in karst environments:a new method of defining protection areas a multi-attribute approach and GIS tools(EPIK method)[J]. Environmental Geology,1999,39(2):165-176. [32] 章程,蒋勇军,Michèle Lettingue,等.岩溶地下水脆弱性评价“二元法”及其在重庆金佛山的应用[J].中国岩溶,2009,26(4):334-340. [33] 郭金玉,张忠彬,孙庆云.层次分析法的研究与应用[J].中国安全科学学报,2008,18(5):148-153. [34] 王红娜.北京市平原区地下水中优先控制污染物筛选方法研究[D].北京:中国地质大学(北京),2015. [35] 国家卫生局.GB5749-2006,生活饮用水卫生标准[S].北京,国家标准出版社.2007. [36] Varnes D J. Commission on landslides and other mass-movement-IADE landslide hazard zonation:a review of principles and practices[M]. Paris:UNESCO,1984. [37] 陈文俊.地苏岩溶地下河系研究[J].中国岩溶,1988,7(3):223-227. [38] 陈文俊.广西地苏地下河系[M].北京:地质出版社,1989. [39] 中国地质调查局.DD2008-01,地下水污染地质调查评价规范[S].2008. [40] 魏兴萍,蒲俊兵,赵纯勇.基于修正RISKE模型的重庆岩溶地区地下水防污性能评价[J].生态学报,2014,34(3):589-596. [41] 王万金,陈登齐.西南岩溶区典型地下河流域地下水脆弱性评价[J].水资源保护,2012,8(4):45-49. [42] 潘晓东,尹学灵,唐建生,等.寨底地下河系统脆弱性评价指标体系及方法[J].广西师范大学学报:自然科学版,2014,32(2):168-174. [43] Kattaa B,Al-Fares W,Al Charideh A R. Groundwater vulnerability assessment for the Banyas Catchment of the Syrian coastal area using GIS and the RISKE method[J]. Journal of Environmental Management,2010,91(5):1103-1110. [44] Van Beynen P E,Niedzielski M A,Bialkowska-Jelinska E,et al. Comparative study of specific groundwater vulnerability of a karst aquifer in central Florida[J].Applied Geography,2012,32(2):868-877. [45] 邹胜章,李录娟,卢海平,等.岩溶地下水系统防污性能评价方法[J].地球学报,2014,35(2):262-268. [46] 张强.青木关岩溶槽谷地下水水源地固有脆弱性评价[J].中国岩溶,2012,31(1):67-73. [47] 官东杰,苏维词,王海军.重庆市岩溶地区生态环境脆弱性评价研究[J].农业现代化研究,2006,27(6):432-435. [48] 王俊杰,何江涛,陆燕,等.地下水污染防治区划体系构建研究[J].环境科学,2012,33(9):3111-3117. [49] 杨平恒,袁道先,叶许春.降雨期间岩溶地下水化学组分的来源及运移路径[J].科学通报,2013,58:1755-1763. [50] Liu J Y,Liu M L,Tian H Q,et al.Spatial and temporal patterns of China’s cropland during 1990-2000:An analysis based on Landsat TM data[J]. Remote Sensing of Environment. 2005,98(4):442-456.
点击查看大图
计量
- 文章访问数: 1647
- HTML浏览量: 547
- PDF下载量: 785
- 被引次数: 0