Computation of fracture water flow based on discrete fracture network model
-
摘要: 离散裂隙网络模型(Discrete Fracture Network(DFN))是研究裂隙水渗流最为有效的手段之一。文章根据裂隙几何参数和水力参数的统计分布,利用Monte Carlo随机模拟技术生成二维裂隙网络,基于图论无向图的邻接矩阵判断裂隙网络的连通,利用递归算法提取出裂隙网络的主干网或优势流路径。基于立方定律和渗流连续性方程,利用数值解析法建立了二维裂隙网络渗流模型,分析不同边界条件下裂隙网络中的流体流动。结果表明,该方法可以模拟区域宏观水力梯度和边界条件下,裂隙网络水力梯度方向总的流量,以及节点的水位、节点间的流量和流动方向的变化特征,为区域岩溶裂隙水渗流计算提供了一种实用、可行的方法。Abstract: Discrete fracture network (DFN) model is one of the most effective means to study the flow path and groundwater flow in a fractured rock aquifer. Based on statistical distributions of geometrical and hydraulic parameters of fractures, two-dimensional discrete fracture network is realized through using Monte Carlo stochastic simulation technology. Fracture network connectivity is determined based on adjacency matrix of undirected graph and backbone or distinct preferential flow path is preserved using recursive algorithm. Flow model of DFN is built using numerical-analytical method on the basis of cubic law and seepage continuity equation; and this model is used to solve fluid flow under different boundary conditions. The results show that this method can simulate the total flux into the regional domain in the direction of hydraulic gradient, head at internal nodes and flow in channels as well as variation of flow direction at internal nodes. It provides a practical and feasible method for flow estimation of regional karst fissure water.
-
Key words:
- fractured media /
- discrete fracture network model /
- connectivity /
- fracture water /
- seepage
-
[1] 李阳兵,王世杰,容丽.西南岩溶山区生态危机与反贫困的可持续发展文化反思[J].地理科学,2004,24(2): 157-162. [2] 蒋忠诚,袁道先.表层岩溶带的岩溶动力学特征及其环境和资源意义[J].地球学报,1999,20(3): 302-308. [3] Berkowitz B. Characterizing flow and transport in fractured geological media: A review[J].Advances in Water Resources,2002,25(8-12): 861-884. [4] 罗明明,尹德超,张亮,等.南方岩溶含水系统结构识别方法初探[J].中国岩溶,2015,34(6):543-550. [5] 刘晓丽,王恩志,王思敬,等.裂隙岩体表征方法及岩体水力学特性研究[J].岩石力学与工程学报,2008,27(9):1814-1821. [6] 宋晓晨,徐卫亚.裂隙岩体渗流模拟的三维离散裂隙网络数值模型(Ⅰ):裂隙网络的随机生成[J].岩石力学与工程学报,2004,23(12): 2015-2020. [7] 刘耀儒,杨强,覃振朝.基于统计模型的裂隙岩体渗流场的并行数值模拟[J].岩石力学与工程学报,2008,27(4):736-742. [8] 陈必光,宋二祥,杨强,等.二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J].岩石力学与工程学报,2014,33(1): 43-51. [9] Neuman S P.Stochastic continuum representation of fractured rock permeability as an alternative to Rev and fracture network concepts: in Proceedings of the 28th U.S.Symposium on Rock Mechanics, Tucson[C], 1987. [10] Neuman S P, Depner J S.Use of variable-scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona[J].Journal of Hydrology, 1988,10(1):475-501. [11] Tsang Y W, Tsang C F, Hale F V, et al.Tracer transport in a stochastic continuum model of fractured media[J].Water Resources Research, 1996,32(32):3077-3092. [12] Ando K, Kostner A, Neuman S P.Stochastic continuum modeling of flow and transport in a crystalline rock mass: Fanay-Augeres, France, revisited[J].Hydrogeology Journal, 2003,11(5):521-535. [13] Long J C S, Remer J S, Wilson C R, et al.Porous media equivalents for networks of discontinuous fractures[J].Water Resources Research, 1982,18(3):645-658. [14] de Dreuzy J R, Darcel C, Davy P, et al.Influence of spatial correlation of fracture centers on the permeability of two-dimensional fracture networks following a power law length distribution[J].Water Resources Research, 2004,40(1):62-67. [15] de Dreuzy J R, Davy P, Bour O.Hydraulic properties of two-dimensional random fracture networks following power law distributions of length and aperture[J].Water Resources Research, 2002,38(12):1276. [16] Cacas M C, Ledoux E, De Marsily G, et al.Modeling fracture flow with a stochastic discrete fracture network: calibration and validation: 2.The transport model[J].Water Resources Research, 1990,26(3):491-500. [17] Cacas M C, Ledoux E, De Marsily G, et al.Modeling fracture flow with a stochastic discrete fracture network:calibration and validation: 1.The flow model[J].Water Resources Research, 1990,26(3):479-489. [18] Long J C S, Billaux D M.From field data to fracture network modeling: An example incorporating spatial structure[J].Water Resources Research, 1987,23(7):1201-1216. [19] 杨杨,唐建生,苏春田,等.岩溶区多重介质水流模型研究进展[J].中国岩溶,2014,33(4):419-424. [20] 王晋丽,陈喜,黄远洋,等.岩体裂隙网络随机生成及连通性研究[J].水文地质工程地质,2013,40(2):30-35. [21] 詹美礼,速宝玉.交叉裂隙水流N-S方程有限元分析[J].水科学进展,1997,8(1):1-8. [22] Priest S D. Discontinuity analysis for rock engineering[M].London: Chapman and Hall,1993. [23] Snow D T. Anisotropie permeability of fractured media[J]. Water Resources Research, 1969,5(6):1273-1289. [24] de Marsily G. Quantitative hydrogeology[M]. Orlando, FL: Academic Press, 1986.
点击查看大图
计量
- 文章访问数: 1544
- HTML浏览量: 604
- PDF下载量: 984
- 被引次数: 0