Stable carbon isotope fractionation (δ13C) of microalgae on CO2 assimilation
-
摘要: 研究微藻CO2同化过程中的碳同位素分馏值,对研究微藻在碳效应过程中的作用具有重要意义。目前还没有获取微藻CO2同化过程的稳定碳同位素分馏值的在体实验方法。文章以莱茵衣藻、蛋白核小球藻、及野外红枫湖混合藻三种岩溶湖泊微藻为例,利用双向标记建立了能在体获得此分馏值的方法,并通过此分馏值定量了微藻的各种无机碳利用途径份额。获得各自CO2同化过程中的碳同位素分馏值分别为15.3‰、14.8‰、21.7‰。三种藻分馏值差异主要与藻的种类及其细胞体积大小有关。利用此分馏值计算出衣藻、小球藻、混合藻自然培养下的碳酸氢根离子途径利用份额分别为100%、81.1%、97.8%,表明了生长在岩溶湖泊的微藻利用无机碳的途径主要为碳酸氢根离子。Abstract: A study on the stable carbon isotopic fractionation (δ13C) in the process of CO2 assimilation of microalgae is very significant to investigate the role of microalgae in estimate of potential carbon dioxide (CO2) sink. However, till now it is yet unknown how to measure the fractionation on CO2 assimilation of microalgae in vivo. Bidirectional tracers, which two types of sodium bicarbonate have different δ13C-PDB values, are used as the carbon isotope labeling to establish the method of calculation of the fractionation value in this study. Furthermore, the different proportions of metabolic pathways of inorganic carbon utilization are quantified by the fractionation value in microalgae. The carbon isotope fractionation (δ13C) value of three types of algae, Chlamydomonas reinhardtii (CR), Chlorella pyrenoidosa(CP), and compound algae collected from surface water of Hongfeng Lake, are 15.3‰, 14.8‰, and 21.7‰, respectively in this paper. The difference of the fractionation values are closely related to cell size of these microalgaes. That means, the bigger cell size of microalgae, the greater the resistance produces and the longer the reaction time of process in the CO2 assimilation. This leads to greater fractional values. The percent share of bicarbonate ions calculated by the fractionation values are 100%, 81.1% and 97.8% respectively in Chlamydomonas reinhardtii, Chlorella pyrenoidosa and compound algae. The results demonstrate that the main pathway of inorganic carbon utilization of microalgae is the bicarbonate ions in karst lakes.
-
[1] Sültemeyer D.Carbonic anhydrase in eukaryotic algae:characterization,regulation,and possible function during photosynthesis[J].Canadian Journal of Botany,1998,76(6):962-972. [2] Sharkia R,Beer S,Cabantchik Z I.A membrane-located polypeptide of Ulva sp.which may be involved in HCO3-uptake is recognized by antibodies raised against the human red-blood-cell anion-exchange protein [J].Planta,1994,194(2):247-249. [3] Invers O,Pérez M,Romero J.Bicarbonate utilization in seagrass photosynthesis:role of carbonic anhydrase in Posidonia oceanica (L.) Delile and Cymodocea nodosa (Ucria) Ascherson[J].Journal of Experimental Marine Biology and Ecology,1999,235(1):125-133. [4] Tsuzuki M,Miyachi S.The function of carbonic anhydrase in aquatic photosynthesis[J].Aquatic Botany,1989,34(1-3):85-104. [5] McNevin D B,Badger M R,Whitney S M,et al.Differences in carbon isotope discrimination of three variants of d-ribulose-1,5-bisphosphate carboxylase/oxygenase reflect differences in their catalytic mechanisms[J].Journal of Biological Chemistry,2007,282(49):36068-36076. [6] Farquhar G D,Ehleringer J R,Hubick K T.Carbon isotope discrimination and photosynthesis[J].Annual Review of Plant Biology,1989,40(1):503-537. [7] Rost B,Kranz S A,Richter K-U,et al.Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton[J].Limnology and Oceanography Methods,2007,5(3):328-337. [8] Wu Y Y,Xu Y,Li H T,et al.Effect of acetazolamide on stable carbon isotope fractionation in Chlamydomonas reinhar dtii and Chlorella vulgaris[J].Chinese Science Bulletin,2012,57(7):786-789. [9] Moroney J V,Tolbert N E.Inorganic carbon uptake by Chlamydomonas reinhardtii[J].Plant Physiology,1985,77(2):253-258. [10] 杭红涛,吴沿友,谢腾祥.双向标记培养植物测定大气二氧化碳稳定碳同位素组成[J].广西植物,2015,35(2):269-272. [11] Hélie J F,Hillaire Marcel C,Rondeau B.Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St.Lawrence River-isotopic and chemical constraint[J].Chemical Geology,2002,186(1):117-138. [12] Myrbo A,Shapley M.Seasonal water-column dynamics of dissolved inorganic carbon stable isotopic compositions(δ13CDIC) in small hardwater lakes in Minnesota and Montana[J].Geochimica et Cosmochimica Acta,2006,70(11):2699-2714. [13] 吴沿友,李西腾,郝建朝,等.不同植物的碳酸酐酶活力差异研究[J].广西植物,2006,26(4):366-369. [14] 王宝利,刘丛强,吴沿友,等.岩溶湖泊微藻的生物地球化学作用和微量金属元素分布[A]//中国矿物岩石地球化学学会第十届学术年会论文集[C].2005. [15] 夏品华,马健荣,李存雄,等.红枫湖水库冬春季浮游生物群落与环境因子的典范对应分析[J].环境科学研究,2011,24(4):378-386. [16] 黄国佳,李秋华,陈椽,等.贵州高原红枫湖水库浮游植物功能分组及其时空分布特征[J].生态学报,2015,35(17):5573-5584. [17] 龙胜兴,陈椽,郭云,等.红枫湖水库水体富营养化及浮游植物群落结构特征[J].中国环境监测,2013,29(1):23-29. [18] Burkhardt S,Riebesell U,Zondervan I.Effects of growth rate,CO2 concentration,and cell size on the stable carbon isotope fractionation in marine phytoplankton[J].Geochimica et Cosmochimica Acta,1999,63(22):3729-3741. [19] 李海涛,吴沿友,谢腾祥.微藻利用不同无机碳途径的定量方法[J].地球与环境,2014,42(1):116-121. [20] 彭希,刘丛强,王宝利等.河流-水库体系水体表层 pCO2 时空变化特征及其扩散通量:以六冲河,洪家渡水库,红枫湖为例[J].地球与环境,2013,41(2):4-10. [21] 任启飞,陈椽,李荔,等.红枫湖秋季浮游植物群落与环境因子关系研究[J].环境科学与技术,2010,33(S2):59. [22] 刘再华,W Dreybrodt,韩军,等.CaCO3-CO2-H2O 岩溶系统的平衡化学及其分析[J].中国岩溶,2005,24(1):1-14. [23] Yuan J,Liu S S,Wang L J,et al.Optimization of microplate toxicity analysis method based on chlorella pyrenoidosa[J].Research of Environmental Sciences,2011,24(5):553-558.
点击查看大图
计量
- 文章访问数: 1458
- HTML浏览量: 682
- PDF下载量: 702
- 被引次数: 0