Perspectives on karst biogeochemistry
-
摘要: 在CO2-水-碳酸盐岩活跃的代谢体系中,由于参与岩溶作用过程的二氧化碳来源复杂,因而研究碳酸盐岩环境中二氧化碳在生物介导下所耦联的物质循环过程及其与全球变化的关系成为岩溶生物地球化学学科的主要内容,并使其成为现代岩溶学的重要分支。在分析国内外岩溶学、地球化学、生物学等交叉学科研究成果的基础上,本文简要评述了基于岩溶生物地球化学特性的水土流失与石漠化过程,碳酸盐岩矿物在生物作用下的化学风化、元素释放规律以及控制元素循环的界面过程,碳酸盐岩区土壤-大气界面下的气体循环及其控制因素和过程,碳酸盐岩区有机污染物在环境中的来源、分布规律与降解,微型生物在岩溶水体碳循环过程中的作用等主题的主要研究进展和存在的科学问题。因此,需要以CO2为核心把岩溶环境中不同尺度上生物有机体参与的地球化学过程联系起来,但人们对生物有机体是如何通过协同作用而改变岩溶环境的,还了解得很少。如果能查明碳酸盐岩一土壤一水一生物相互作用产生的功能,岩溶生物地球化学将进一步拓展CO2-水-碳酸盐岩相耦合的岩溶作用过程,并在岩溶资源领域和全球变化领域有广阔的应用前景。因此,岩溶生物地球化学需要多学科的协同研究,特别是加强生物过程与岩溶过程的耦合研究,方能解决岩溶领域存在的生态环境问题。
-
关键词:
- CO2-水-碳酸盐岩代谢体系 /
- 地球生物 /
- 元素循环 /
- 全球变化 /
- 岩溶生物地球化学
Abstract: In the karst process, the dissolution of the carbonate minerals, such as CaCO3 and CaMg(CO3)2, is essential in the presence of water and under a normal atmospheric temperature/pressure environment, involving the consumption of atmospheric CO2 into Ca2+/Mg2+ and the anion bicarbonate. Usually, the hydration of CO2 to HCO3- is relatively slow, especially in the forward direction, of which the CO2 are originated from different sources resulting from a complex interaction between geology, climate and hydrology, and also biological components. In this paper, previous researches in the fields of karst, geochemistry and biology were overviewed. The main points of this paper are to address the issues on karst biogeochemistry process, the biological action involving chemical weathering of carbonate rocks and element cycle, the gas circulation in the interface between soil and atmosphere, organic pollutants in the karst environment, as well as the function of microorganism relating to karst carbon cycle, with a major focus on water-soil erosion and rocky desertification. To understand the above problems, the function of earth creatures in the karst environment must be valued. -
[1] 袁道先,刘再华等著.碳循环与岩溶地质环境[M].北京:科学出版社,2003:1-240. [2] 刘再华,Wolfgang Dreybrodt等著.岩溶作用动力学与环境[M]. 北京:地质出版社,2007:1-237. [3] Vernadsky V I L. Biogeochemie[M]. Paris: Sorbonne, 1926:456. [4] 刘志刚.广西都安县石灰岩地区土壤侵蚀的特点和水土保持工作的意见[J].林业科学,1963, 8(4): 354-360. [5] Jones R I. Aspects of the biological weathering of limestone pavements[J]. Proceedings of Geologists’ Association, 1965, 76: 421-434. [6] Gosden M S. Peat Deposits of Scar Close Ingleborough, York-shire[J]. Journal of Ecology, 1968, 56: 345-353. [7] Li Q, Li Z Y, Liang J H, et al. δ13C Characteristics of Soil Organic Carbon in Hilly Karst Area[J]. Polish Journal of Environmental Studies, 2014, 23(6): 2345-2349. [8] 罗绪强,王世杰,张桂玲,等. 喀斯特石漠化过程中地表凋落物δ15N特征[J].矿物岩石地球化学通报,2014,33(2):214-220. [9] 魏兴萍. 基于同位素法监测岩溶槽谷区山坡土壤侵蚀和养分流失[J]. 农业工程学报,2013,29(22):128-136. [10] 盛茂银,刘洋,熊康宁. 中国南方喀斯特石漠化演替过程中土壤理化性质的响应[J]. 生态学报,2013,33(19):6303-6313. [11] Hall K, Arocena J M, Boelhouwers J, et al. The influence of aspect on the biological weathering of granites: observations from the Kunlun Mountains, China[J]. Geomorphology, 2005, 67(1):171-188. [12] Sabbioni C, Zappia G. Oxalate patinas on ancient monuments: the biological hypothesis[J]. Aerobiologia, 1991, 7(1): 31-37. [13] Xiao L, Hao J, Wang W, et al. The up-regulation of carbonic anhydrase genes of Bacillus mucilaginosus under soluble Ca2+ deficiency and the heterologously expressed enzyme promotes calcite dissolution[J]. Geomicrobiology Journal, 2014,31(7), 632-641. [14] Xiao L, Lian B, Hao J, et al. Effect of carbonic anhydrase on silicate weathering and carbonate formation at present day CO2 concentrations compared to primordial values[J]. Scientific reports, 2015, 5, 7733,1-10. [15] Li Q, He Y Y, Li Z Y.The promoting effect of soil carbonic anhydrase on the limestone dissolution rate in SW China[J].Carbonates and Evaporites,2015,DOI 10.1007/s13146-015-0281-2. [16] Cunningham K I, Northup D E, Pollastro R M, et al. Bacteria, fungi and biokarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico[J]. Environmental Geology, 1995, 25(1): 2-8. [17] Borch T, Kretzschmar R, Kappler A, et al. Biogeochemical redox processes and their impact on contaminant dynamics[J]. Environmental Science & Technology, 2010, 44(1):15-23. [18] 朱立军,李景阳. 碳酸盐岩红色风化壳中的氧化铁矿物[J]. 地质科学,2001,36(4):395-401. [19] Liu D, Dong H, Bishop M E, et al. Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri[J]. Geochim Cosmochim Acta, 2011, 75: 1057-1071. [20] Liu D, Dong H, Bishop M E, et al. Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate reducing bacterium[J]. Geobiology, 2012, 10: 150-162. [21] Barker W W, Welch S A, Chu S, et al. Experimental observations of the effects of bacteria on aluminosilicate weathering[J]. Am Miner, 1998, 83:1551-1563. [22] 韩作振,陈吉涛,迟乃杰,等.微生物碳酸盐岩研究:回顾与展望[J].海洋地质与第四纪地质,2009,29(4):29-38 [23] Ebelmen J J. Sur les produits de la décomposition des espèces minérales de la famille des silicates[J]. Annales des Mines, 1945, 7: 3-66. [24] Jakucs L, Jakucs L. Morphogenetics of karst regions[M]. Wiley,1977. [25] 姚凯, 刘映良, 黄俊学. 喀斯特地区植物根系对土壤元素迁移的影响[J]. 东北林业大学学报, 2011, 39(3):81-82. [26] 李强,孙海龙,何师意,等.桂林岩溶试验场植物多样性恢复及其水、气效应[J].热带地理,2005, 25(1):5-9. [27] Johnson J F, Vance C P, Allan D L. Phosphorus deficiency in Lupinus albus (Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase) [J]. Plant Physiol, 1996, 112: 31-41. [28] 李植斌. 论土壤生物对喀斯特发育的作用[J]. 衡阳师专学报(自然科学),1987,6(2):16-21. [29] Remy W, Taylor T N, Hass H, et al. Four hundred-million-year-old vesicular arbuscular mycorrhizae[J]. Proceedings of the National Academy of Sciences, 1994, 91(25):11841-11843. [30] Glowa K R, Arocena J M, Masssicotte H B. Extraction of potassium and/or magnesium from selected soil minerals by Piloderma[J]. Geomicrobidogy, 2003, 20: 99-111. [31] Kolo K, Claeys P. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater[J]. Biogeosciences, 2005, 2: 277-293. [32] Taylor L L, Leake J R, Quirk J, et al. Biological weathering and the long-term carbon cycle: Integrating mycorrhizal evolution and function into the current paradigm[J]. Geobiology, 2009, 7: 171-219. [33] Dijkstra F A, Breemen N V, Jongmans A G, et al. Calcium weathering in forested soils and the effect of different tree species[J]. Biogeochemistry, 2003, 62(3):253-275. [34] 刘丛强等著.生物地球化学过程与地表物质循环—西南喀斯特土壤—植被系统生源要素循环[M].北京:科学出版社,2009:1-618. [35] Elser J J, Fagan W F, Kerkhoff A J, et al. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change[J]. New Phytologist, 2010, 186(3):593-608. [36] 刘丛强等著.生物地球化学过程与地表物质循环—西南喀斯特流域侵蚀与生源要素循环[M].北京:科学出版社,2007:1-608. [37] 刘丛强, 蒋颖魁, 陶发祥,等. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环[J]. 地球化学, 2008, 37(4):404-414. [38] 刘学炎,肖化云,刘丛强. 植物叶片氮同位素δ15N指示大气氮沉降的探讨[J]. 矿物岩石地球化学通报,2007,26(4):405-409. [39] Lal R. Soil carbon sequestration impacts on global climate change and food security[J].Science,2004,304:1623-1627. [40] 王兵,姜艳,郭浩,等.土壤呼吸及其三个生物学过程研究[J].土壤通报,2011,42(2):483-490. [41] 程建中,李心清,周志红,等. 西南喀斯特地区几种主要土地覆被下土壤CO2-C通量研究[J]. 地球化学,2010,39(3):258-265. [42] 刘芳, 刘丛强, 王仕禄,等.黔中喀斯特石漠化地区土壤温室气体浓度的时空分布特征[J].环境科学,2009, 30(11):3136-3141. [43] Li Q, Wang H, Jin Z, et al. The carbon isotope fractionation in the atmosphere-soil-spring system associated with CO2-fixation bacteria at Yaji karst experimental site in Guilin, SW China[J]. Environmental Earth Sciences, 2015, 74(6): 5393-5401. [44] Ge T, Wu X, Chen X, Yuan H, et al. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils[J]. Geochimica et Cosmochimica Acta, 2013,113: 70-78. [45] Li W, Yu L J, Yuan D X, et al. A study of the activity and ecological significance of carbonic anhydrase from soil and its microbes from different karst ecosystems of Southwest China[J]. Plant and Soil, 2005, 272(1-2), 133-141. [46] Chen X, Su Y, He X, et al. Soil bacterial community composition and diversity respond to cultivation in Karst ecosystems[J]. World Journal of Microbiology and Biotechnology,2012, 28(1), 205-213. [47] Gray C J, Engel A S. Microbial diversity and impact on carbonate geochemistry across a changing geochemical gradient in a karst aquifer[J]. The ISME journal, 2012, 7(2): 325-337. [48] He X Y, Su Y R, Liang Y M, et al. Land reclamation and short-term cultivation change soil microbial communities and bacterial metabolic profiles[J]. Journal of the Science of Food and Agriculture, 2012, 92(5):1103-1111. [49] 靳振江,汤华峰,李敏,等.典型岩溶土壤微生物丰度与多样性及其对碳循环的指示意义[J].环境科学,2014,35(11):4284-4290. [50] 王英辉,祁士华,袁道先,等. 广西岩溶洞穴土壤中多环芳烃污染特征与解析[J]. 环境科学,2009,5:1255-1259. [51] Jin C S, Tokuhiro K, Ike M, et al. Biodegradation of bisphenol A (BPA) by river water microcosms[J]. Journal-Japan Societyon Water Environment, 1996, 19: 878-884. [52] Kang J H, Ri N, Kondo F. Streptomyces sp. strain isolated from river water has high bisphenol A degradability[J]. Letters in applied microbiology, 2004, 39(2): 178-180. [53] Li Q, Wang X H, Korzhev M, et al. Potential biological role of laccase from the sponge Suberites domuncula as an antibacterial defense component[J]. Biochimica et Biophysica Acta-General Subjects, 2015,1850(1):118-128. [54] Yuan D X. The carbon cycle in karst[J]. Z. Geomorph. N.F.,1997,108:91-102. [55] Yoshimura K, Inokura Y. The geohcemical cycle of carbon dioxide in a carbonate rock area, Akiyoshi-dai Plateau, Yamaguchi, Southwestern Japan[M]. Proc. 30th Int. Geol.1997,24:114-126. [56] Christina L. An unsung carbon sink[J]. Science, 2011, 334(6058):886-887. [57] Groves C, Cao J H, Zhang C. Response-carbon shifted but not sequestered[J]. Science, 335(6069):655. [58] Rane L C. Carbon shifted but not sequestered[J]. Science, 2012, 335(6069):655. [59] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmospheric CO2 budget: Considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 2010, 99(3-4): 162-172. [60] 章程,谢运球,宁良丹,等. 桂林会仙岩溶湿地典型水生植物δ13C特征与固碳量估算[J]. 中国岩溶,2013,32(3):247-252. [61] Waidner L A, Kirchman D L. Aerobic anoxygenic phototrophic bacteria attached to particles in turbid maters of the Delaware and Chesapeake estuaries[J]. Appl Environ Microbiol, 2007, 73 (12):3936-3944. [62] Shi L, Cai Y, Chen Z, et al. Diversity and abundance of aerobic anoxygenic phototrophic bacteria in two cyanobacterial bloom forming lakes in China[J]. In Annales de Limnologie-International Journal of Limnology,2010, 46(4):233-239. [63] Yurkov V V,Cstonyi J T. New light on aerobic anoxygenic phototrophs. In: Hunter N ed. The purple phototrophic bacteria[M]. New York: Springer, 2009, 28:31-35. [64] Jiao N Z, Herndl G J, Hansell D A, et al. Microbial Production of Recalcitrant Dissolved Organic Matter: Long-Term Carbon Storage in the Global Ocean[J]. Nature Reviews Microbiology,2010, 8(8): 593-599 [65] Jiao N Z, Tang K, Cai H Y, et al. Increasing the Microbial Carbon Sink in the Sea by Reducing Chemical Fertilization on the Land[J]. Nature Reviews Microbiology, 2011,9(1):75. [66] Downing J P, Meybeck M, Orr J C, et al. Land and water interface zones[J]. Water, Air, Soil Pollution, 1993, 70(1):123-137. [67] Yuan D X, Zhang C. Karst processes and the carbon cycle, final report of IGCP 379[M]. Bejing: Geological Publishing House,2002. [68] Dittrich M, Obst M. Are picoplankton responsible for calcite precipitation in lakes? [J]. Ambio, 2004, 33(8): 559-564. [69] Raymond P A, Bauer J E. Riverine export of aged terrestrial organic matter to the North Atlantic Ocean[J]. Nature, 2001, 409(6819):497-500. [70] Bristow T F, Kennedy M J, Morrison K D, et al. The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates[J]. Geochimica et Cosmochimica Acta, 2012,90:64-82. [71] Smith M E, Carroll A R, Scott J J, et al. Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima: Green River Formation of Wyoming[J]. Earth and Planetary Science Letters, 2014,403: 393-406. [72] 赵吉睿, 巩瑞红, 李畅游,等.三种碳源对乌梁素海好氧不产氧光合细菌群落结构的影响[J].湖泊科学,2014,26(1):113-120. [73] 陈晓洁, 曾永辉, 简纪常,等. 玛珥湖好氧不产氧光合细菌pufM基因DNA和mRNA的定量及多样性分析[J]. 微生物学通报, 2012, 39(11):1560-1572. [74] Rodrigues S G, Bueno A A D P, Ferreira R L. A new troglobiotic species of Hyalella (Crustacea, Amphipoda, Hyalellidae) with a taxonomic key for the Brazilian species[J]. Zootaxa, 2014, 3815(2): 200-214. [75] Krevs A, Kucinskiene A. Vertical distribution of bacteria and intensity of microbiological processes in two stratified gypsum Karst Lakes in Lithuania[J]. Knowledge & Management of Aquatic Ecosystems, 2011, 65(402):170-181. [76] Lyons W B, Leslie D L, Harmon R S, et al. The carbon stable isotope biogeochemistry of streams, Taylor Valley, Antarctica[J]. Applied Geochemistry, 2013, 32:26-36.
点击查看大图
计量
- 文章访问数: 1587
- HTML浏览量: 580
- PDF下载量: 958
- 被引次数: 0