Review of research on element migration and environmental indicators in karst cave systems
-
摘要: 洞穴滴水与沉积物中的元素作为环境替代指标,在反映其物质来源以及反演古环境气候的研究中有着重要的作用,已受到国内外学者的广泛关注。本文在总结前人研究成果的基础上,概述了喀斯特洞穴体系中的元素迁移机理,重点对土壤、基岩、滴水中Ca、Mg、Sr、Ba四种元素的迁移变化机制进行了系统归纳;结合环境影响因素,分析了各元素的来源与特性,进而对滴水与沉积物中元素比值所反映的环境指示意义进行了综述。同时提出,应深入探究洞穴体系的元素迁移机制;结合洞穴环境体系的自身特点,区分元素指标在不同环境中的信息指示特征,提高沉积物中元素指示古气候环境信息的精准性;结合石漠化地表环境特征,从洞穴滴水的降雨响应研究入手,建立石漠化环境地下监测指标体系。Abstract: Using geologic carriers in cave systems to explore palaeoenvironment proxies has been conducted for many years. Elements in drip water and speleothem of cave as environment proxies are crucial in tracing their material sources, palaeoenvironments and palaeoclimate, which is commonly accepted by worldwide academics. Elements migration is mainly in the form of solution in karst cave systems, owing to dissolution and eluviation effects of rainwater on ground vegetation, soil and bedrock. It includes physical and chemical processes which control the element dissolution, migration and precipitation. It is an activation (dissolution)-migration (displacement)-combination (precipitation) reaction, which is influenced not only by climatic and environment (temperature, rainfall, CO2, etc.), but also by temporalspatial variation (migration path, residence time, etc.), while driven and restricted by CO2-H2O-CaCO3 circulation. Distinct differences exist in both element migration under different soil-rock conditions and element characters in the media of soil and bedrock, together with spatial heterogeneity of elements migration, all of which influence the material source of drip water and speleothem. Therefore, understanding the element sources of drip water and element migration mechanism in cave systems is a theoretical basis and premise for exploring element as environment proxies. This review is based on previous studies and outlines element migration mechanisms in karst cave systems. It focuses on systematical generalization of migration and variation mechanisms of Ca, Mg, Sr, and Ba in soil, bedrock and drip water. Sources and characters of each element are analyzed with environment impact factors. Then it summarizes the environment indicative significance which is reflected by element ratios in drip water and speleothem. Meanwhile,problems and prospects are pointed out for the research of element migration and environmental indicators in cave systems as follows,(1) Current explanation is unclear for the element migration in cave systems, because the migration process of karst water in cave roofs is complex and difficult to observe. So it is an emphasis in future study. (2) Cave drips and speleothem have diversities in their distribution coefficients due to the difference in time scales and media. In addition, environmental differences in study areas can lead to uncertainties and multiplicities in environmental indicator significances of element ratios. Here this review suggests to commence from environmental response mechanism of drip elements. Then we analyze the sensitive response changes of element proxies in drip water to different environments. Next we differentiate the material sources and response features of drip elements in different environments. Thus we can support speleothem research and enhance the accuracy of paleoclimate proxies. (3) We should commence from high-resolution rainfall response of cave drips and combine with surface environment features of rocky desertification. Then we extract sensitive indicators from drip water information of rainfall responses to reflect migration mechanisms of karst water, along with material sources of drip water. Thus we can establish an indicator system for underground monitoring under a rocky desertification environment, which provides scientific reference for the evolution process of the ecological environment with rocky desertification.
-
Key words:
- element migration /
- drip water /
- sedimentary /
- environment /
- rocky desertification
-
[1] 袁道先.我国岩溶资源环境领域的创新问题[J].中国岩溶,2015,34(2):98-100. [2] O’Neil J R, Clayton R N, Mayeda T. Oxygen isotope fractionation in divalent metal carbonates[J]. Journal of Chemical Physics, 1969, 51(12): 5547-5558. [3] Fairchild I J, Borsato A, Tooth A F, et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records [J]. Chemical Geology. 2000,166(3-4): 255-269. [4] Verheyden S, Keppens E, Fairchild I J, et al. Mg, Sr and Sr isotope geochemistry of a Belgian Holocene speleothem: implications for paleoclimate reconstructions [J]. Chemical Geology. 2000,169(1-2):131-144. [5] Rutlide H,Baker A,Marjo C E,et al.Drip water organic matter and trace element geochemistry in a semi-arid karst environment:Implications for speleothem paleoclimatology[J]. Geochimical et Cosmochimica Acta,2014,135(13):217-230. [6] Huang Y M, Fairchild I J, Borsato A, et al. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy) [J]. Chemical Geology,2001,175(3-4):429-448. [7] Zhou H Y, Wang Y, Huang L Y, et al. Speleothem Mg, Sr and Ba records during the MIS 5c-d, and implications for paleoclimate change in NE Sichuan, Central China [J]. Chinese Science Bulletin,2011, 56(32):3445-3450. [8] Hori M, Ishikawa T,Nagaishi K,et al. Prior calcite precipitation and source mixing process influence Sr/Ca, Ba/Ca and 87Sr/86Sr of a stalagmite developed in southwestern Japan during 18.0-4.5 ka[J]. Chemical Geology, 2013, 347:190-198. [9] 丁忠浩.环境规划与管理[M].北京:机械工业出版社,2007:10-13. [10] 刘子琦,李红春,徐晓梅,等.贵州中西部洞穴水系与碳酸钙的稳定同位素意义[J].地质论评,2007,53(2):233-241. [11] 覃嘉铭,袁道先,程海,等.贵州荔波董歌洞D3石笋碳氧稳定同位素及微量元素记录的环境变化[J].地球学报,2004,25(6):625-632. [12] 刘子琦,张乾柱,熊康宁.洞穴环境替代指标研究现状及其石漠化记录研究问题探究[J].水土保持研究,2013,20(4):293-300. [13] 陈俊,王鹤年.地球化学[M].科学出版社,2004:89-95. [14] 袁道先.碳循环与全球岩溶[J].第四纪研究,1993, (1):1-6. [15] 汪安璞,杨淑兰.西南地区大气颗粒物中的人为来源元素及与降雨中元素组成的关系[J].环境化学,1993,10(2):39-47. [16] 蒋忠诚.岩溶动力系统中的元素迁移[J].地理学报,1999,54(5):438-444. [17] 蒋忠诚.广西弄拉白云岩环境元素的岩溶地球化学迁移[J].中国岩溶,1997,16(4):305-312. [18] 刘英俊,曹励明,李兆麟,等.元素地球化学[M].北京:科学出版社,1984:360-366. [19] 刘再华.外源水对灰岩和白云岩的侵蚀速率野外试验研究:以桂林尧山为例[J].中国岩溶,2000,19(1):1-4. [20] Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change[J].Quaternary Science Reviews,2009,28(5-6):449-468. [21] 李俊云,李廷勇,王建力,等.重庆芙蓉洞土壤带Mg和Sr元素特征及其环境意义[J].中国科学:地球科学,2013,43(10):1667-1676. [22] 王明达,胡超涌,周炼,等.土壤和围岩地球化学组成及气候对洞穴滴水水化学的影响:以湖北清江和尚洞为例[J].地质科技情报,2010,29(3):97-103. [23] 任小凤,杨琰,彭涛,等.豫西鸡冠洞洞穴水及现代沉积物Mg, Sr和Ba记录及其意义[J].中国岩溶,2014,33(1):57-63. [24] 戴树桂.环境化学[M].高等教育出版社,1997:46-50. [25] 黄昌勇.土壤学[M].中国农业出版社,2000:21-25. [26] Eimers M C, Dillon P J, Schif S L,et al. The effects of drying and re-wetting and increased temperature on sulphate release from upland and wetland material[J]. Soil Biology&Biochemistry,2003,35(12):1663-1673. [27] 向晓晶,李廷勇,王建力,等.重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响[J].中国岩溶,2011,30(2):193-199. [28] Tatar E, Mihucz V G, Zambo L, et al. Seasonal changes of fulvic acid, Ca and Mg concentrations of water samples collected above and in the Beke Cave of the Aggtelek karst system (Hungary)[J].Applied Geochemistry, 2004,19(11):1727-1733. [29] 王德炉,朱守谦,黄宝龙.石漠化过程中土壤理化性质变化的初步研究[J].山地农业生物学报,2003,22(3):204-207. [30] Chou L, Garrels R M, Wollast R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals[J]. Chemical Geology, 1989, 78(3):269-282. [31] 李锐,高杰,张莉,等.黔北白云岩红色风化壳元素地球化学特征[J].中国岩溶,2014,33(4):396-404. [32] 何师意,徐胜友,张美良.岩溶土壤中CO2浓度水化学观测及其与岩溶作用关系[J].中国岩溶,1997,16(4):319-324. [33] 章程,蒋忠诚,何师意,等.垂直气候带岩溶动力系统特征研究:以重庆金佛山国家级自然保护区为例[J].地球学报,2006,27(5): 510-514. [34] 赵瑞一,吕现福,蒋建建,等.土壤CO2及岩溶碳循环影响因素综述[J].生态学报,2015,35(13):4257-4264. [35] Austin A T, Yahdjian L, Stark J M, et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems[J]. Oecologia,2004,141(2):221-235. [36] 王义东,王辉民,马泽清,等.土壤呼吸对降雨响应的研究进展[J].植物生态学报,2010,34(5):601-610. [37] 唐灿,周平根.北京典型溶洞区土壤中的CO2及其对岩溶作用的驱动[J].中国岩溶,1999,18(3):213-217. [38] 刘再华,何师意,袁道先.土壤中的CO2及其对岩溶作用的驱动[J].水文地质工程地质,1998,25(4):42-45. [39] Anderson J M. Carbon dioxide evolution from two temperate deciduous woodland soils[J]. Journal of Applied Ecology,2005,10(2):361-375. [40] Cook F J, Freeman J, Orchard V A, et al. Relationship between soil respiration and soil moisture[J]. Soil Biology and Biochemistry, 2008, 40(5):1013-1018. [41] 周运超,王世杰,谢兴能,等.贵州4个洞穴滴水对大气降雨响应的动力学及其意义[J].科学通报,2004,49(21):2220-2227. [42] 冯志刚,马强,李石朋,等.模拟不同气候条件下碳酸盐岩风化作用的淋溶实验研究[J].中国岩溶,2012,31(4):361-376. [43] 龙偲,陈中吉,周运超,等.静水和滴水条件下碳酸盐岩溶解与主要元素释放规律初步研究[J].中国岩溶,2015,34(5):452-459. [44] 刘子琦,熊康宁,吕小溪,等.喀斯特洞穴滴水信息对地表环境响应研究进展[J].中国岩溶,2015,34(1):43-51. [45] 彭玲莉,李廷勇.岩溶洞穴滴水环境监测研究进展[J].中国岩溶,2012,31(3):316-326. [46] 殷建军,林玉石,唐伟.洞穴文石石笋古气候环境变化研究进展、存在问题及研究方向[J].中国岩溶,2014,33(4):387-395. [47] 张会领,覃嘉铭,张美良,等.洞穴化学沉积物的古环境记录研究进展[J].中国岩溶,2004,23(2):144-153. [48] 黄春霞,李廷勇,韩立银,等.重庆芙蓉洞滴水现代次生化学沉积物沉积速率与元素特征[J].中国岩溶,2015,34(3):238-246. [49] Jo K N, Woo K S, Hong G H, et al. Rainfall and hydrological controls on speleothem geochemistry during climatic events(droughts and typhoons): An example from Seopdong Cave, Republic of Korea[J]. Earth and Planetary Science Letters,2010, 295(3-4): 441-450. [50] Francisco W C, Wang X F, Augusto A, et al. Orbital and Millennial-scale precipitation changes in Brazil from speleothem records[J].Developments in Paleoenvironmental Research,2009,14(1):29-60. [51] Treble P, Shelley J, Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern(1911-1992) speleothem with instrumental climate data from south-west Australia[J]. Earth and Planetary Science Letters, 2003,216(1-2):141-153. [52] 周文亮,姜光辉,陈国富,等.桂林硝盐洞滴水水文和水化学动态变化特征[J].中国岩溶,2013,32(1):51-56. [53] 何师意,潘根兴,曹建华,等.表层岩溶生态系统碳循环特征研究[J].第四纪研究,2000,20(4):383-390. [54] 潘根兴,曹建华,何师意,等.岩溶土壤系统对土壤空气CO2的吸收及其对陆地碳循环的意义:以桂林丫吉村岩溶试验场的野外观测和模拟实验为例[J].地学前缘,2000,7(4):580-587. [55] 秦小光,蔡炳贵,吴金水,等.土壤温室气体昼夜变化及其环境影响因素研究[J].第四纪研究,2005,25(3):376-388. [56] 张美良,朱晓燕,吴夏,等.地下河水人工补给洞穴滴水、碳酸盐(钙)沉积特征及景观恢复探讨[J].中国岩溶,2015,34(1):17-26. [57] 周运超,王世杰.贵州将军洞上覆土层对滴水水化学特征的影响[J].环境科学,2006,27(10):1986-1991. [58] 周运超,王世杰.贵州凉风洞洞穴滴水水文水化学过程分析[J].第四纪研究,2005,25(2):208-215. [59] 王新中,班凤梅,潘根兴.洞穴滴水地球化学的空间和时间变化及其控制因素:以北京石花洞为例[J].第四纪研究,2005,25(2):258-264. [60] Tooth A F, Fairchild I J. Soil and karst aquifer hydrological controls on the geochemical evolution of speleothem-forming drip waters,Crag cave, southwest Ireland[J]. Journal of Hydrology,2003,273(1):51-68. [61] McDonald J, Drysdale R, Hill D, et al. The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia[J]. Chemical Geology, 2007,244(3-4):605-623. [62] 李俊云,李红春,刘子琦,等.贵州中西部洞穴水系与碳酸钙沉积物的Mg/Sr比值和地球化学特征[J].中国岩溶,2006,25(3):177-186. [63] 王晓晓,徐尚全,沈立成.雪玉洞岩溶地下水、地表水Ca2+、Mg2+、Sr2+变化特征研究[J].中国岩溶,2013,32(1):43-50. [64] Geode A, Vogel J C. Trace element variations and dating of a Late Pleistocene Tasmanian speleothems[J]. Palaeogeography, Palaeoclimatology, Palaeoecolgy, 1991, 88(1-2):121-131. [65] Huang Y M, Fairchild, I J. Partitioning of Sr2+ and Mg2+into calcite under karst analogue experimental conditions[J].Geochimica et Cosmochimica Acta, 2001, 65(1): 47-62. [66] 周运超,王世杰.贵州七星洞滴水的水文水化学特征及其意义[J].水文地质工程地质,2006,(1):52-57. [67] 赵瑞一.不同程度石漠化下洞穴滴水δ13CDIC变化特征及影响因素[D].西南大学,2013. [68] Johnson K R, Hu C, Belshaw N S, et al. Seasonal traceelement and stable isotope variations in a Chinese speleothem: the potential for high resolution paleomonsoon reconstruction[J]. Earth and Planetary Science Letters, 2006,244(1-2):394-407. [69] 李清,王建力,李红春,等.重庆地区石笋记录中Mg/Ca比值及古气候意义[J].中国岩溶,2008,27(2):145-150. [70] Robert M S, Smart P L, Baker A. Annual trace element variations in a Holocene speleothem[J]. Earth and Planetary Science Letters,1998,154(1-4):237-246. [71] 李彬,袁道先,林玉石,等.洞穴次生化学沉积物中Mg、Sr、Ca及其比值的环境指代意义[J].中国岩溶,2000,19(2): 115-122. [72] 郑立娜,周厚云,朱照宇.洞穴次生碳酸盐沉积的Mg/Ca与Sr/Ca比值研究进展:兼论洞穴次生沉积物Mg/Ca与Sr/Ca的影响机制[J].中国岩溶,2010,29(2):212-218. [73] Tan L C, Shen C C, Cai Y J,et al. Trace-element variations in an annually layered stalagmite as recorders of climatic changes and anthropogenic pollution in Central China. Quaternary Research, 2014,81(2):181-188. [74] Wong C I, Banner J L, Musgrove M. Seasonal dripwater Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleoclimate records. Geochimica et Cosmochimica Acta, 2011,75(12):3514-3529. [75] Zhou H Y, Feng Y X, Zhao J X, et al. Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment[J]. Chemical Geology, 2009, 268(3-4):233-247. [76] Lorens R B. Sr, Cd, Mn, and Co distribution coefficients in calcite as a function of calcite precipitation rate[J]. Geochimica et Cosmochimica Acta,1981,45(3):553-561. [77] 马志邦,李红春,夏明,等.距今3ka来京东地区的古温度变化:石笋Mg/Sr记录[J].科学通报,2002,47(23):1829-1834. [78] 章程,袁道先.洞穴滴石石笋与陆地古环境记录研究进展[J].地球科学进展,2001,16(3):374-381. [79] Ayalon A, Bar-Matthews M, Kaufman A. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel[J]. The Holocene,1999,9(6):715-722. [80] 杨邦,雷国良,姜修洋.黔北石膏洞9.9~4.2 ka BP石笋微量元素记录及环境意义[J].海洋地质与第四纪地质,2014,34(2):143-148. [81] Hellstrom J C, McCulloch M T. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem [J]. Earth and Planetary Science Letters, 2000, 179(2): 287-297. [82] 张伟宏,汪永进,吴江滢,等.南京葫芦洞石笋微量元素记录的末次冰消期气候变化[J].第四纪研究,2014,34(6):1227-1237. [83] Wu J Y, Wang Y J, Cheng H, et al. Stable istope and trace element investigation of two contemporaneous annuallylaminated stalagmites from Northeastern China surrounding the “8.2 ka event”[J].Climate of the Past, 2012,8(5):1591-1614. [84] 王建力,何潇,李清,等.重庆新崖洞4.5ka以来气候变化的石笋微量元素记录及环境意义[J].地理科学,2010,30(6):910-915. [85] 谭亮成,蔡演军,安芷生,等.石笋氧同位素和微量元素记录的陕南地区4200~2000 a B.P.高分辨率季风降雨变化[J].第四纪研究,2014,34(6):1238-1245. [86] Karmann I, Cruz F W, Viana O, et al. Climate influence on geochemistry parameters of waters from Santana-Perolas cave system, Brazil[J]. Chemical Geology, 2007, 244(1-2):232-247. [87] 周厚云,王悦,黄柳苑,等.氧同位素阶段5c~d时期川东北石笋Mg, Sr和Ba记录及其意义[J].科学通报,2011,56(33):2791-2796. [88] Sondag F, van Ruymbeke M, Soubies F, et al. Monitoring present day climatic conditions in tropical caves using an Environmental Data Acquisition System (EDAS) [J]. Journal of Hydrology, 2003, 273(1):103-118. [89] McDonald J, Drysdale R, Hill D, et al. The hydrochemical response of cave drip waters to sub-annual and inter-annual climate variability, Wombeyan Caves, SE Australia[J]. Chemical Geology, 2007 ,244(3-4):605-623. [90] Hu C Y,Henderson G M,Huang J H,et al.Report of a three-year monitoring programme at Heshang Cave, Central China[J]. International Journal of Speleology, 2008, 37(3):143-151. [91] Baldini J U, McDermott F, Baldini L M, et al. Identifying short-term and seasonal trends in cave drip water trace element concentrations based on a daily-scale automatically collected drip water dataset [J]. Chemical Geology, 2012, 330-331:1-16. [92] Musgrove M, Banner J L. Controls on the spatial and temporal variability of vadose dripwater geochemistry:Edwards Aquifer, central Texas[J]. Geochimica et Cosmochimica Acta, 2004, 68(5): 1007-1020. [93] 张美良,朱晓燕,吴夏,等.洞穴次生化学碳酸盐沉积物-石笋的气候替代指标的意义与不确定性因素[J].地球与环境,2015,43(2):138-151. [94] 朱健,班凤梅,蔡炳贵,等.北京石花洞降水至滴水下渗时间示踪观测[J].第四纪研究,2008,28(3):509-510. [95] 杨涛,王世杰,罗维均,等.现代环境监测研究中的一种新示踪指示剂(SO4)[J].地球与环境,2012,40(1):1-8. [96] 贾苒,胡超涌,邱海鸥,等.天然荧光物质作为岩溶地下水的示踪剂研究:以湖北清江和尚洞为例[J].中国岩溶,2007,26(3):262-265.
点击查看大图
计量
- 文章访问数: 2353
- HTML浏览量: 327
- PDF下载量: 1465
- 被引次数: 0