Source of cave CO2 and its spatial attributive characteristics of Zhijin Cave in Guizhou Province
-
摘要: 为探索喀斯特高原峡谷地区高位旱洞内CO2来源及其空间分布特征,于2015年1月至2015年7月按月实施定位监测,对贵州织金洞洞穴CO2浓度和洞穴水、土壤CO2浓度和土壤水以及大气降水、山顶泉水进行监测。结果表明:(1)织金洞上覆土壤CO2浓度是大气CO2浓度的11~17倍,是洞穴CO2的4~7倍。织金洞洞内CO2的来源,横向上主要来自于气流的交换、游客的呼吸作用;垂直方向上主要来自于洞穴上方延伸入基岩中植物根系的呼吸作用,洞穴上覆基岩溶隙、溶管中进入洞穴内的大气CO2,地下河水脱气以及洞穴滴水碳酸钙的沉积释放的CO2。(2)织金洞为多进口洞,CO2浓度插值空间分布呈现两端低中间高的空间分布特征,同时在1 200×10-6~1 400×10-6高值区范围内出现800×10-6~1 000×10-6低值区特征。整体上,洞穴CO2随着进、出洞口两端海拔向洞内升高而呈上升趋势,在洞穴中部灵霄殿达到最大值。(3)洞内水和洞外土壤水均为HCO3--Ca2+型水,大气降水、山顶泉水为SO42--Ca2+型水。在垂直迁移过程中,大气降水-山顶泉水-土壤水-洞穴水不同部位水中各化学成分(硬度、Ca2+/Mg2+、HCO3-/SO42-、PCO2、SIc)各不相同。Abstract: In order to explore the source of cave CO2 and its spatial distribution in karst plateau gorge area,a monitoring program on monthly basis was conducted at Zhijin Cave, Guizhou province, from January to July in 2015 for the monitoring of CO2 concentrations in cave and soil, cave water, soil moisture, rainfall and in the spring water above the cave. The results show that: (1) CO2 concentration in the soil above Zhijin cave is 11-17 times of atmospheric CO2, and 4-7 times of the cave CO2, respectively. The major sources of Zhijin cave CO2 come from air exchange and tourists respiration in horizontal direction; in vertical direction they are mainly from the respiration of plant root extending into the bedrock at the top of the cave, overlying cave foundation in karst fissure, soluble tubes entering inside the cave, the atmospheric CO2 ,and the freed CO2 due to the cave calcium carbonate deposition via groundwater degassing and dripping water in the cave. (2) Zhijin Cave is a multiline cave, the interpolation of space distribution of CO2 content showed characteristics of low ends and high in the middle, at the same time,the low value range of 800-1,000 ppm appears in the range of 1,200-1,400 ppm. In the whole cave, CO2 concentration tends to increase from both ends to the middle of the cave, along with an elevated altitude, which reaches a maximum value in Lingxiao Palace. (3) The groundwater in cave and soil water outside of the cave are both HCO3--Ca2+ type, while the atmospheric precipitation and spring water are SO42--Ca2+type.In the process of vertical migration, the chemical composition (hardness,Ca2+/Mg2+、HCO3-/SO42-、PCO2、SIc) in different parts of water from rain-spring-soil water-cave water is different.
-
Key words:
- carbon dioxide concentration /
- hydro-chemistry /
- spatial difference /
- Zhijin Cave
-
[1] 蔡炳贵,沈凛梅,郑伟,等.本溪水洞洞穴空气CO2浓度与温、湿度的空间分布和昼夜变化特征[J].中国岩溶,2009,28(4):348-354. [2] 朱文孝,李坡,潘高潮.织金洞的气候环境及空气中二氧化碳[J]. 中国岩溶,1993,12(4):118-126. [3] 袁道先,蔡桂鸿. 岩溶环境学[M]. 重庆:重庆出版社, 1988. [4] 杨汉奎. 旅游洞穴的开展与保护[A]. 宋林华, 丁怀元. 喀斯特景观与洞穴旅游[C]. 北京:中国环境科学出版社, 1993. [5] 宋林华,韦小宁,梁福源. 河北临城白云洞洞穴旅游对洞穴CO2浓度及温度的影响[J]. 中国岩溶,2003,22(3):66-71. [6] 班凤梅,蔡炳贵. 北京石花洞空气环境主要因子季节性变化特征研究[J]. 中国岩溶,2011,30(2):132-137. [7] 陈伟海,邓亚东,韩道山,等. 桂林市芦笛岩、大岩洞穴环境特征[J]. 中国岩溶,2004,23(2):29-35. [8] Frisia S, Fairchild I J, Fohlmeister J, etal. Carbon mass-balance modeling and carbon isotope exchange processes in dynamic caves[J]. Geochimica et Cosmochimica Acta , 2011, 75(2): 380-400. [9] Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere[J]. Water Resources Research, 1984, 20(1):153-156. [10] 徐承香,李子忠,黎道洪.贵州织金洞洞穴动物群落多样性与光照强度及土壤重金属含量的关系[J].生物多样性,2013,21(1):62-70. [11] Breecker D O, Payne A E, Quade J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation[J]. Geochimica et Cosmochimica Acta, 2012, 96: 230-246. [12] Milanolo S, Gabrovsek F. Analysis of carbon dioxide variations in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina[J]. Boundary-layer meteorology, 2009, 131(3):479-493. [13] Cuezva S, Fernandez-Cortes A, Benavente D, et al. Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Roleo the surface soil layer[J]. Atmospheric Environment, 2011, 45(7): 1418-1427. [14] Baker A, Genty D. Environmental pressures on conserving cave speleothems: effectsof changing surface land use and increased cave tourism[J]. Journal of Environmental Management, 1998, 53(2):165-167. [15] 贺卫,李坡,钱治,等.织金洞地质遗迹的开发保护与管理[M].贵阳:贵州人民出版社,2011:1. [16] 李景阳,安裕国,戎昆方. 暗河型溶洞的形成和演化过程-以贵州织金洞等为例[J].贵州工学院学报,1991,20(3):1-9. [17] 罗时琴,吕文强, 李安定, 等.织金洞二氧化碳的变化规律及其影响因素分析[J].浙江农林大学学报, 2015, 32(2):291-297. [18] 王红,罗时琴,杨庆东,等.贵州织金洞20年CO2浓度变化规律及影响因素研究[J].湖北农业科学,2014,53(6):1268~1270. [19] 汤国安,杨昕. ArcGIS地理信息系统空间分析实验教程[M].北京:科学出版社,2006:26-397. [20] 王晓晓.雪玉洞洞穴系统碳的变化特征及洞内CO2来源研究[D].西南大学,2014. [21] 寇文杰.基于EXCEL的地下水化学舒卡列夫分类方法[J]. 工程勘察,2013,(5):48-50,96.
点击查看大图
计量
- 文章访问数: 2134
- HTML浏览量: 299
- PDF下载量: 1265
- 被引次数: 0