• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重庆芙蓉洞洞穴水DIC-δ13C的变化特征及影响因素

黄春霞 李廷勇 韩立银 李俊云 袁 娜 王海波 张涛涛 赵 鑫 周菁俐

黄春霞, 李廷勇, 韩立银, 李俊云, 袁 娜, 王海波, 张涛涛, 赵 鑫, 周菁俐. 重庆芙蓉洞洞穴水DIC-δ13C的变化特征及影响因素[J]. 中国岩溶, 2016, 35(3): 299-306. doi: 10.11932/karst20160308
引用本文: 黄春霞, 李廷勇, 韩立银, 李俊云, 袁 娜, 王海波, 张涛涛, 赵 鑫, 周菁俐. 重庆芙蓉洞洞穴水DIC-δ13C的变化特征及影响因素[J]. 中国岩溶, 2016, 35(3): 299-306. doi: 10.11932/karst20160308
HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin, ZHOU Jing-li. Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(3): 299-306. doi: 10.11932/karst20160308
Citation: HUANG Chun-xia, LI Ting-yong, HAN Li-yin, LI Jun-yun, YUAN Na, WANG Hai-bo, ZHANG Tao-tao, ZHAO Xin, ZHOU Jing-li. Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing[J]. CARSOLOGICA SINICA, 2016, 35(3): 299-306. doi: 10.11932/karst20160308

重庆芙蓉洞洞穴水DIC-δ13C的变化特征及影响因素

doi: 10.11932/karst20160308
基金项目: 国家自然科学基金项目(41172165, 41302138, 41440020);中央高校基本科研业务费专项资金项目(XDJK2013A012, XDJK2014C010);岩溶动力学重点实验室开放基金资助课题(KDL201301)和西南大学博士基金项目(SWU114022)

Variations of cave water DICδ13C and its influencing factors in Furong cave, Chongqing

  • 摘要: 为了研究芙蓉洞滴水和池水中溶解无机碳碳同位素(DICδ13C)的变化特征、影响因素及其气候环境指示意义,于2013年5月-2014年5月对芙蓉洞进行了洞穴监测。结果显示芙蓉洞山体土壤CO2浓度和洞内空气CO2浓度均表现出明显的季节变化特征,夏半年浓度偏高,冬半年浓度偏低,受温度和降水量的共同影响。芙蓉洞5个滴水点的DICδ13C平均值为-8.98 ‰,两个池水点的DICδ13C平均值为-6.98 ‰,池水的DICδ13C比滴水的重2 ‰。对应2013年7月的干旱气候,洞穴水DICδ13C在10月相应出现明显偏重值,偏轻的DICδ13C值则是对湿润气候的滞后响应。洞穴水的DICδ13C变化对地表气候的响应具有明显的滞后期。洞穴水DICδ13C主要受土壤CO2的影响,基岩溶解作用、包气带的开放性等因素也会对洞穴水DICδ13C造成一定的影响。研究结果表明在短时间尺度上,洞穴水DICδ13C变化响应了当地降水量以及地表湿润状况的变化。

     

  • [1] Baker A, Smart P L, Edwards R L, et al. Annual growth banding in a cave stalagmite [J]. Nature, 1993, 364: 518-520.
    [2] Dorale J A, Edwards R L, Ito E, et al. Climate and vegetation history of the midcontinent from 75 to 25 ka: A speleothem record from Crevice cave, Missouri, USA [J]. Science, 1998, 282: 1871-1874.
    [3] Fleitmann D, Burns S J, Mudelsee M. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman [J]. Science, 2003, 300: 1737-1739.
    [4] Yuan D, Cheng H, Edwards R L, et al. Timing, duration, and transitions of the last interglacial Asian monsoon [J]. Science, 2004, 304: 575-578.
    [5] Cerling T E. The stable isotopic composition of modern soil carbonate and its relationship to climate [J]. Earth and Planetary Science Letters, 1984, 71(2): 229-240.
    [6] Quade J, Ceriing T E, Bowman J R. Systematic variations in carbon and oxygen isotopic composition of Pedogenic soil carbonate along elevational transects in the southern Great Basin, United States [J]. Geological Society of America Bulletin, 1989, 101:464-475.
    [7] Dorale J A, Gonzálex L A, Reagan M K, et al. A high-resolution record of holocene climate change in speleothem calcite from Cold Water Cave, Northeast Iowa [J]. Science, 1993, 258: 1626-1630.
    [8] Genty D, Baker A, Massault M, et al. Dead carbon in stalagmites: Carbonate bedrock paleodissolution vs. ageing of soil organic matter: Implications for δ13C variations in speleothems [J]. Geochimica et Cosmochimica Acta, 2001,65(20): 3443-3457.
    [9] Baldini J, McDermott F, Baker A, et al. Biomass effects on stalagmite growth and isotope ratios: a 20th century analogue from Wiltshire, England [J]. Earth and Planetary Science Letters, 2005, 240:486-494.
    [10] 李红春, 顾德隆, Stott L D, 等. 北京石花洞500年来的δ13C记录与古气候变化及大气CO2 浓度变化的关系[J]. 中国岩溶, 1997, 16(4): 285-295.
    [11] Linge H, Lauritzen S E, Lundberg J, et al. Stable isotope stratigraphy of Holocene speleothems: Examples from a cave system in Rana, northern Norway [J]. Palaeogeography Palaeoclimatology,Palaeoecology, 2001, 167: 209-224.
    [12] Fairchild I J, Tuckwell G W, Baker A. Modelling of drip water hydrology and hydrogeochemistry in a weakly karstified aquifer (Bath, UK): Implications for climate change studies [J]. Journal of Hydrology, 2006, 321: 213-231.
    [13] 刘肖, 杨琰, 彭涛, 等. 河南鸡冠洞洞穴水对极端气候的响应及其控制因素研究[J]. 环境科学, 2015, 36(5):1582-1589.
    [14] BarMatthews M, Ayalon A, Kaufman A, et al. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel [J]. Earth and Planetary Science Letters, 1999, 166(1-2):85-95.
    [15] Sp?tl C, Fairchild I J, Tooth A F. Cave air control on drip water geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves [J]. Geochimica et Cosmochimica Acta, 2005, 69(10): 2451-2468.
    [16] Lambert W J, Aharon P. Controls on dissolved inorganic carbon and δ13C in cave waters from DeSoto Caverns: Implications for speleothem δ13C assessments [J]. Geochimica et Cosmochimica Acta, 2011, 75(3): 753-768.
    [17] Li T Y, Shen C C, Li H C, et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave, Chongqing, China [J]. Geochimica et Cosmochimica Acta, 2011, 75(15): 4140-4156.
    [18] 衣成城, 李廷勇, 李俊云, 等. 芙蓉洞洞穴离子浓度和元素比值变化特征及其环境意[J]. 中国岩溶, 2011, 30(2): 99-103.
    [19] 叶明阳, 李廷勇, 王建力, 等. 芙蓉洞次生碳酸盐沉积特征及与降水的关系研究[J]. 沉积学报, 2009, 27(4): 684-690.
    [20] 向晓晶, 李廷勇, 王建力, 等. 重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响[J]. 中国岩溶, 2011, 30(2): 193-199.
    [21] Li J Y, Li T Y, Wang J L, et al. Characteristics and environmental significance of Ca, Mg, and Sr in the soil infiltrating water overlying the Furong Cave, Chongqing, China [J]. Science China, Earth Science, 2013,56(12): 2126-2134.
    [22] 朱学稳. 芙蓉洞的次生化学沉积物[J]. 中国岩溶, 1994, 12(4): 357-368.
    [23] 李廷勇, 李红春, 李俊云, 等. 重庆芙蓉洞洞穴沉积物 δ13C、δ18O特征及意义[J]. 地质论评, 2008, 54(5): 712-720.
    [24] Li T Y, Li H C, Xiang X J, et al. Transportation characteristics of δ13C in the plants-soil-bedrock-cave system in Chongqing karst area [J]. Science China, Earth Science, 2012, 55(4): 685-694.
    [25] 蔡小薇, 赵景波. 西安长延堡夏季土壤CO2释放量的变化及影响因素[J]. 干旱区地理, 2005, 28(3): 316-319.
    [26] Breecker D O, Payne A E, Quade J, et al. The sources and sinks of CO2 in caves under mixed woodland and grassland vegetation [J]. Geochimica et Cosmochimica Acta,2012,96:230-246.
    [27] Frisia S, Fairchild I J, Fohlmeister J, et al. Carbon mass-balance modelling and carbon isotope exchange processes in dynamic caves [J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 380-400.
    [28] Troester J W, White W B. Seasonal fluctuations in the carbon dioxide partial pressure in a cave atmosphere [J]. Water Resources Research, 1984, 20(1): 153-156.
    [29] Milanolo S, Gabrovsek F. Analysis of carbon dioxide variation in the atmosphere of Srednja Bijambarska Cave, Bosnia and Herzegovina [J]. Boundary-layer meteorology, 2009, 131(3): 479-493.
    [30] Cuezva S, FernadezCortes A, Benavente D, et al. Short-term CO2(g) exchange between a shallow karstic cavity and the external atmosphere during summer: Role of the surface soil layer [J]. Atmospheric Environment, 2011, 45(7): 1418-1427.
    [31] Baker A, Genty D. Environmental pressure on conserving cave speleothems: effects of changing surface land use and increased cave tourism [J]. Journal of Environmental Management, 1998, 53(2): 165-175.
    [32] Hartland A, Fairchild I J, Lead J R, et al. From soil to cave: Transport of trace metals by natural organic matter in karst drip waters [J]. Chemical Geology, 2012, 304(3):68-82.
    [33] Kowalczk A J, Froelich P N. Cave air ventilation and CO2 outgassing by radon-222 modeling: how fast do caves breathe? [J]Earth and Planetary Science Letters, 2010, 289(1): 209-219.
    [34] Hendy, C H. The isotopic geochemistry of speleothems-I. The Calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimatic indicators [J]. Geochimica et Cosmochimica Acta, 1971, 35: 801-824.
    [35] Fohleister J, Scholz D, Kromer B, et al. Modelling carbon isotopes of carbonates in cave drip water [J]. Geochimica et Cosmochimica Acta, 2011, 75(18): 5219-5228.
    [36] Johnson K R, Hu C Y, Belshaw N S, et al . Seasonal trace element and stable-isotope variations in a Chinese speleothem: The potential for high-resolution paleomonsoon reconstruction [J]. Earth and Planetary Science Letters, 2006, 244(1-2): 394-407.
    [37] 章程. 不同土地利用下溶蚀速率季节差异及其影响因素:以重庆金佛山为例[J]. 地质论评, 2010, 56: 136-140.
  • 加载中
计量
  • 文章访问数:  1905
  • HTML浏览量:  354
  • PDF下载量:  1485
  • 被引次数: 0
出版历程
  • 发布日期:  2016-06-25

目录

    /

    返回文章
    返回