Comparative study on nitrogen mineralization of soil in woodland and cropland in karst and clasolite regions
-
摘要: 通过15N标记法和MCMC氮素转化模型,研究了岩溶区(石灰性土壤)和碎屑岩区(红壤)林地和农田土壤易分解有机氮矿化(M易)、难分解有机氮矿化(M难)和总有机氮矿化(M总)速率。结果发现,土壤矿化速率受土壤类型和土地利用方式的显著影响。林地石灰性土壤M总(3.71 mg N/kg)显著低于林地红壤(5.57 mg N/kg),石灰性土壤MNlab(1.81 mg N/kg)与MNrec(1.90 mg N/kg)相近,而红壤M易(4.60 mg N/kg)显著高于M难(0.96 mg N/kg)。林地变为农田后,石灰性土壤M总 显著提高,而红壤显著降低。与林地相比,岩溶区农田土壤M易提高了72.5%,而M难下降了33.7%。碎屑岩区农田土壤M易和M难分别降低至2.47和0.46 mg N/kg。岩溶区土壤CaO和MgO含量与M易呈显著负相关,而与M难呈显著正相关,表明岩溶区土壤钙镁含量是影响氮矿化速率的重要因素。Abstract: In this study, the 15N tracing technique and N transformation model were used to investigate the mineralization of labile organic nitrogen (as N) (MNrec), recalcitrant organic N (MNlab) and organic N (MNorg) to NH4+ in calcareous and red soils of woodland and cropland in karst and clasolite regions, respectively. The results show that soil N mineralization rates are significantly affected by soil types and land uses. MNorgin calcareous soil (3.71 mg N/kg/d) of woodland is considerably lower than that of red soil (5.57 mg N/kg/d). There is no significant difference between MNlab(1.81 mg N/kg/d) and MNrec(1.90 mg N/kg/d) observed in calcareous soil of woodland. However, the MNlab(4.60 mg N/kg/d) is much higher than MNrec(0.96 mg N/kg/d) in red soil of woodland. After converting woodland into cropland, the MNorglevel significantly increases to 4.21 mg N/kg/d in calcareous soil, but it decreases to 2.93 mg N/kg/d in red soil. In contrast to woodland, MNlabincreases by approximately 72.5% and MNrec decreases by approximately 33.7% in calcareous soil of cropland, respectively. CaO and MgO concentrations in calcareous soils are related positively with MNlab but negatively with MNrec, suggesting that soil CaO and MgO are the important factors affecting N mineralization rates in karst regions.
-
Key words:
- karst region /
- 15N /
- mineralization /
- labile organic N /
- recalcitrant organic N
-
[1] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: How can it occur? [J]. Biogeochemistry, 1991,13(2): 87-115. [2] Galloway J N, Townsend A R, Erisman J W, et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878): 889-892. [3] Booth M S, Stark J M, Rastetter E B. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data[J]. Ecological Monographs, 2005, 75(2): 139-157. [4] Müller C, Stevens R J, Laughlin R J. A 15N tracing model to analyse N transformations in old grassland soil[J]. Soil Biology and Biochemistry, 2004, 36(4): 619―632. [5] Huygens D, Boeckx P, Templer P, et al. Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils[J]. Nature Geoscience, 2008,1(8):543-548. [6] Zhang J B, Cai Z C, Zhu T B, et al. Mechanisms for the retention of inorganic N in acidic forest soils of southern China[J]. Scientific Reports, 2013, 3(6145):2342. [7] Zhu T B, Zhang J B, Meng T Z, et al. Tea plantation destroys soil retention of NO3- and increases N2O emissions in subtropical China[J].Soil Biology and Biochemistry, 2014, 73(6):106-114. [8] 李强,孙海龙,贺秋芳,等.自然降雨条件下喀斯特区土壤钾、氮流失及其对泉水水化学的影响:以广西马山弄拉为例[J].农业环境科学学报, 2006, 25(2): 467-470. [9] 李新爱,肖和艾,吴金水,等.喀斯特地区不同土地利用方式对土壤有机碳、全氮以及微生物生物量碳和氮的影响[J].应用生态学报, 2006,17(10): 1827-1831. [10] 袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展, 2001, 16(4): 461-466. [11] 曹建华,袁道先,潘根兴. 岩溶生态系统中的土壤[J].地球科学进展, 2003, 18(1): 37-44. [12] 曹建华,袁道先,章程,等. 受地质条件制约的中国西南岩溶生态系统[J].地球与环境, 2004, 32(1): 1-8. [13] 王世杰,李阳兵. 喀斯特石漠化研究存在的问题与发展趋势[J].地球科学进展, 2007, 22(6): 573-582. [14] Bengtsson G, Bengtson P, M?nsson KF. Gross nitrogen mineralization-, immobilization-, and nitrification rates as a function of soil C/N ratio and microbial activity[J]. Soil Biology and Biochemistry, 2003, 35(1):143-154. [15] Pietri J C A, Brookes P C . Nitrogen mineralisation along a pH gradient of a silty loam UK soil [J]. Soil Biology and Biochemistry,2008, 40(3):797-802. [16] Rousk J, Brookes P C, B??th E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization [J]. Applied and Environmental Microbiology , 2009, 75(6):1589-1596. [17] Zhu T B, Zeng S M, Qin H L, et al. Low nitrate retention capacity in calcareous soil under woodland in the karst region of southwestern China[J]. Soil Biology and Biochemistry, 2016, 97: 99―101. [18] 杨慧,张连凯,曹建华,等.桂林毛村岩溶区不同土地利用方式土壤有机碳矿化及土壤碳结构比较[J].中国岩溶, 2011, 30 (4): 410-416. [19] 曹建华,周莉,杨慧,等.桂林毛村岩溶区与碎屑岩区林下土壤碳迁移对比及岩溶碳汇效应研究[J]. 第四纪研究, 2011, 31(3): 431-437. [20] Müller C, Rütting T, Kattge J, et al.Estimation of parameters in complex 15N tracing models via Monte Carlo sampling[J]. Soil Biology and Biochemistry, 2007, 39: 715-726. [21] Zhang J B, Zhu T B, Meng T Z, et al. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China[J]. Soil Biology and Biochemistry, 2013, 62(5):107-114. [22] Groffman P M, Fisk M C, Driscoll C T, et al. Calcium additions and microbial nitrogen cycle processes in a Northern Hardwood Forest[J]. Ecosystems, 2006,9(8): 1289-1305. [23] Johnson C E, Driscoll C T, Blum J D, et al. Soil chemical dynamics after calcium silicate addition to a Northern Hardwood Forestt[J]. Soil Science Society of America, 2014,78(4):1458-1468.
点击查看大图
计量
- 文章访问数: 1952
- HTML浏览量: 338
- PDF下载量: 1350
- 被引次数: 0