Relationships between biomass of the Juglans regia trees in different stand ages and soil nutrients in karst peak-cluster depression
-
摘要: 文章以喀斯特峰丛洼地的核桃(Juglans regia)人工林为研究对象,采用野外与室内相结合的方法,分析了不同林龄核桃生物量与土壤养分的变化规律,比较了土壤养分与环境因子(坡度、坡向、坡位和裸岩率)的相关性,探讨了土壤养分对生物量的影响作用。结果表明:(1) 核桃林生物量随林龄的增大而增大;不同林龄均以树干和根系比重为主,占整个生物量的60%以上;(2) 除速效钾外,土壤养分表现为盛产期(33年)>幼苗期(2年)>初果期(10年),不同林龄之间的土壤养分差异显著;(3)相关分析表明,土壤养分与坡位、裸岩率无相关性,与坡度、植被覆盖率呈负相关;(4)主要影响核桃幼苗期生物量的是全磷,初果期的是速效磷,盛果期的是速效氮。因而土壤肥力状况是喀斯特地区核桃人工林培育需要考虑的重要因素之一。Abstract: The objective of this study is to explore the change process and the relationships between biomass and soil nutrients for different-aged Juglans regia plantation in karst peak-cluster depression in the northwest of Guangxi Province. Based on a combination of field investigation and laboratory analysis, this study analyzed the change in biomass and soil nutriens and the influence of soil nutrients on the biomass of the Juglans regia trees in different stand ages. It also discussed the biomass of the Juglans regia trees and associated soil nutrients; and established relationship between soil nutrients and environmental factors (e.g. slope aspect, gradient and position and bare rock rate). The biomass of the Juglans regia trees increases along with the stand age, of which the trunk and root accounted for more than 60% of the total biomass. Except for the available potassium, the soil nutrients have such a trend as rich fruiting period (33 years) > seedling stage (2 years) > early fruiting (10 years). The result of correlation analysis showed that there was no significant relationship between soil nutrient, slope position and bare rock rate. However, there was negatively significant correlation between soil nutrient, slope, and vegetation coverage. The biomass of the Juglans regia trees is a result of the combined influence of various factors and their growth at different stages is affected by different factors. For example, in seedling period the biomass of the Juglans regia trees is controlled by total phosphorus; but that is controlled by available phosphorus in early fruiting and by available nitrogen in rich fruiting. Based on these findings, soil nutrient should be considered as one of key factors in the Juglans regi plantation cultivation in karst regions.
-
Key words:
- Juglans regia /
- karst peak-cluster depression /
- stand age /
- biomass /
- soil nutrients
-
[1] 吴协保, 孙继霖, 林琼, 等. 我国西南岩溶石漠化土地生态建设分区治理思路与途径探讨[J].中国岩溶, 2009, 28(4):391-396. [2] 郭红艳, 王月容, 卢琦, 等. 岩溶石漠化地区生态系统服务价值评价[J]. 中国岩溶, 2013,32 (2):211-217. [3] 杨光忠. 试谈岩溶石漠化地区植树造林构想:爆破造隙蓄水凿岩挖坑培土植树造林法[J].中国岩溶, 2010, 29(1): 32-34. [4] 谭秋锦, 宋同清, 彭晚霞, 等. 西南峡谷型喀斯特不同生态系统的碳格局[J]. 生态学报, 2014, 34(19): 5579-5588. [5] Zhang H, Song T Q, Wang K L, et al. Biomass and carbon storage in an age-sequence of Cyclobalanopsis glauca plantations in southwest China[J]. Ecological Engineering , 2014, 73(2): 184-191. [6] 王明月, 刘绍雄, 熊智丁, 等. 石漠化地区豆科植物根瘤菌降解碳酸钙、镁能力研究[J]. 生态环境学报, 2014, 23(10): 1581-1585. [7] 杜峰, 梁宗锁, 徐学选, 等. 陕北黄土丘陵区撂荒草地群落生物量及植被土壤养分效应[J]. 生态学报, 2007, 27(5): 1673-1683. [8] Ross D J, Ma H K. Land rehabilitation under pasture on volcanic parent materials: Changes in soil microbial biomass and C-metabolism and N-metabolism[J]. Australian Jouranl of Soil Research, 1994, 32(6): 1321-1337. [9] Garcia C, Hernandez T, Albaladejo J, et al. Revegetation in semiarid zones: influence of terracing and organic refuse on microbial activity[J]. Soil Science Society of America Journal,1998,62(3): 670-676. [10] 马艳萍, 马惠玲, 刘兴华, 等. 鲜食核桃和干核桃贮藏生理及营养品质变化比较[J]. 食品与发酵工业, 2001, 37(3):235-238. [11] 相昆, 张美勇, 徐颖, 等. 不同核桃品种耐寒特性综合评价[J]. 应用生态学报, 2011, 9(2): 2325-2330. [12] 陈良华, 胡庭兴, 张帆, 等. 用AFLP技术分析四川核桃资源的遗传多样性[J]. 植物生态学报, 2008, 32(6): 1362-1372. [13] 黄鑫龙, 孟艳琼, 傅松玲, 等. 不同人工植被恢复模式对山核桃林地土壤理化性质的影响[J]. 中国农学通报,2014,30(22):64-68. [14] 刘方春, 邢尚军, 马海林, 等. 干旱生境中接种根际促生细菌对核桃根际土壤生物学特征的影响[J]. 应用生态学报, 2014, 32(5): 1094-1103. [15] 赵金龙, 王泺鑫, 韩海荣, 等. 辽河源不同龄组油松天然次生林生物量及空间分配特征[J]. 生态学报, 2014, 34 (23) :7026-7037. [16] 伟斌, 洪添胜, 李震, 等. 果树生物量的间接测量方法[J]. 江苏大学学报(自然科学版), 2007, 28(4): 284-288 . [17] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社,2000. [18] 〖JP2〗安然, 龚吉蕊, 尤鑫, 等. 不同龄级速生杨人工林土壤微生物数量与养分动态变化[J]. 植物生态学报, 2011, 35 (4): 389-401. [19] 〖JP2〗刘方, 王世杰, 刘秀明, 等. 喀斯特石漠化区不同优势树种根际土壤有机碳及氮磷的变化[J]. 中国岩溶,2011, 30(1):59-65. [20] 谭秋锦, 宋同清, 曾馥平, 等. 峡谷型喀斯特不同生态系统土壤养分及其生态化学计量学特征[J]. 农业现代化研究, 2014, 35(2): 225-228 . [21] Frey S D, Elliott E T, Paustian K. Bacterial and fungal abundance and biomass in conventional and no-tillage agroecosystems along two climatic gradients[J]. Soil Biology and Biochemistry, 1999, 31(4): 573-585. [22] 伍宇春, 傅瓦利, 程辉, 等. 岩溶区坡耕地土壤肥力综合评价:以重庆中梁山坡耕地样区为例[J]. 中国岩溶, 2014,33(2): 223-230. [23] 刘月娇, 张洋, 倪九派, 等. 基于地统计学烟区土壤养分及pH值空间异质性分析:以重庆市酉阳县岩溶区为例[J].中国岩溶, 2014,33 (3): 319-325. [24] Noh N J, Son Y, Lee S K, et al. Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea[J]. Science China Life Sciences, 2010, 53(7): 822-830. [25] Cao J, Wang X, Tian Y,et al. Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest[J]. Ecological Research, 2012,27(5):883-892. [26] 康冰, 刘世荣, 史作民, 等. 南亚热带人工马尾松林下植物组成特征及主要木本种群生态位研究[J]. 应用生态学报, 2005, 16 (9):1786-1790. [27] 巨文珍, 王新杰, 孙玉军. 长白落叶松林龄序列上的生物量及碳储量分配规律[J]. 生态学报, 2011, 31(4): 1139-1148. [28] Hierro J L, Maron J L, Callaway R M. A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range[J]. Journal of Ecology, 2005, 93(1): 5-15. [29] 王永利, 李保国, 齐国辉, 等. 不同年龄早实核桃园土壤主要矿质元素含量变化研究[J]. 河北农业大学学报, 2009, 32(2): 25-33.
点击查看大图
计量
- 文章访问数: 1951
- HTML浏览量: 329
- PDF下载量: 1206
- 被引次数: 0