Effects of calcium, iron and aluminum fractions on the phosphorus bioavailability in limestone soil of karst region
-
摘要: 为揭示钙、铁、铝形态与岩溶地区土壤磷有效性关系,通过改进的BCR元素形态连续提取法获取石灰土不同发育阶段土壤矿质元素赋存形态,并分析与总磷及速效磷含量之间的相关关系。初步研究表明:石灰土壤中全磷和速效磷在石灰土发育过程呈降低趋势,从黑色石灰土到黄色石灰土,总磷降低了76.7%,速效磷减少了84.7%。石灰土总磷与速效磷同酸溶态、可还原态及残渣态钙,可氧化态铁、铝和可还原态铝显著正相关,而同总铁、总铝以及残渣态铝显著负相关,相关系数绝对值均达到0.9以上。随着石灰土发育进行,钙总量及其形态均降低,而铝、铁总量和形态呈增加趋势,可能导致岩溶地区石灰土磷及其有效性缺乏越发突出。Abstract: In this paper, the effective relationships between phosphorus (P) in the soil of the karst region and the fractions of calcium, iron and aluminum have been studied to provide theoretical basis for stabilization of karst bio-system and lime soil fertility. The fractions of mineral elements in limestone soil at different stages of development were detected by improved BCR sequence extraction method and the relationship between total phosphorus and available phosphorus was analyzed. The results revealed that the concentration of total soil phosphorus and readily available phosphorus decreased with the development of limestone soil. The concentration of total P decreased to 76.7% and readily bioavailable P decreased to 84.7%. The positive corrections occurred between total and readily bioavailable P with the acid extractable, reducible and residual fractions of calcium, oxidable iron and aluminum, reducible aluminum. Total iron, aluminum and residual aluminum had negative corrections with total and readily bioavailable P. The absolute correlation coefficients were higher than 0.9 With the development of limestone soil, the lack of total P and readily bioavailable P was more and more prominent for the limestone soil quality and fertility.
-
[1] Lambers H, Plaxton W C. Phosphorus: back to the roots[J]. Annual Plant Reviews, 2015, 48: 3-22. [2] Vitousek P M, Porder S, Houlton B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogenphosphorus interactions[J]. Ecological Applications,2010, 20(1):5-15. [3] Sterner R W, Elser J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere[M]. Princeton: Princeton University Press, 2002:1-42. [4] Naples B K, Fisk M C. Belowground insights into nutrient limitation in northern hardwood forests[J]. Biogeochemistry, 2010, 97(2-3):109-121. [5] Intergovernmental Panel on Climate Change (IPCC). In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al. ) [M]. Cambridge: Cambridge University Press, 2013:1-5. [6] Cui S, Shi Y, Groffman P M, et al. Centennial-scale analysis of the creation and fate of reactive nitrogen in China (1910–2010)[J]. Proceedings of the National Academy of Sciences, 2013, 110(6): 2052-2057. [7] Wu Y H, Zhou J, Yu D, et al. Phosphorus biogeochemical cycle research in mountainous ecosystems[J]. Journal of Mountain Science, 2013, 10(1): 43-53. [8] Cordell D, Drangert J O, White S. The story of phosphorus: Global food security and food for thought[J]. Global Environmental Change, 2009, 19(2):292-305. [9] 赵琼,曾德慧.陆地生态系统磷素循环及其影响因素[J].植物生态学报,2005,29(1):153-163. [10] 袁道先.全球岩溶生态系统对比:科学目标和执行计划[J].地球科学进展,2001,16(4):461-466. [11] 曹建华,袁道先,章程,等.受地质条件制约的中国西南岩溶生态系统[J].地球与环境, 2004, 32(1):1-8. [12] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44. [13] 杨慧,曹建华,孙蕾,等.岩溶区不同土地利用类型土壤无机磷形态分布特征[J].水土保持学报, 2010, 24(2):135-140. [14] Tunesi S, Poggi V, Gessa C. Phosphate adsorption and precipitation in calcareous soils: the role of calcium ions in solution and carbonate minerals[J]. Nutrient Cycling in Agroecosystems, 1999, 53(3):219-227. [15] Von Wandruszka R. Phosphorus retention in calcareous soils and the effect of organic matter on its mobility[J]. Geochemical transactions, 2006, 7:6. [16] Cross A F, Schlesinger W H. Biological and geochemical controls on phosphorus fractions in semiarid soils[J].Biogeochemistry, 2001, 52(2):155-172. [17] Braschi I, Ciavatta C, Giovannini C, et al. Combined effect of water and organic matter on phosphorus availability in calcareous soils[J]. Nutrient Cycling in Agroecosystems, 2003, 67(1):67-74. [18] 胡宁,袁红,蓝家程,等. 岩溶石漠化区不同植被恢复模式土壤无机磷形态特征及影响因素[J].生态学报, 2014, 34(24):7393-7402. [19] Wu Y H, Prietzel J, Zhou J, et al. Soil phosphorus bioavailability assessed by XANES and Hedley sequential fractionation technique in a glacier foreland chronosequence in Gongga Mountain, Southwestern China[J]. Science China Earth Sciences, 2014, 57(8):1860-1868. [20] Valsami-Jones E. Phosphorus in Environmental Technology: Principles and Applications[M]. London: IWA Publishing, 2004:656. [21] Kaňa J, Kopá?ek J, Camarero L, et al. Phosphate sorption characteristics of European alpine soils[J]. Soil Science Society of America Journal, 2011, 75(3): 862-870. [22] Kunito T, Tsunekawa M, Yoshida S, et al. Soil properties affecting phosphorus forms and phosphatase activities in Japanese forest soils: soil microorganisms may be limited by phosphorus[J]. Soil Science, 2012, 177(1): 39-46. [23] 袁道先,戴爱德,蔡五田,等.中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型的研究:以桂林丫吉村为例[M].桂林:广西师范大学出版社,1996:1-20. [24] 鲁如坤.土壤农业化学分析方法[M]北京:中国农业科技出版社,1999. [25] Sulkowski M, Hirner A V. Element fractionation by sequential extraction in a soil with high carbonate content[J].Applied Geochemistry,2006,21(1):16-28. [26] Rauret G, López-Sánchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring Jem, 1999, 1(1):57-61. [27] 李阳兵, 王世杰, 李瑞玲. 岩溶生态系统的土壤[J]. 生态环境, 2004, 13(3): 434-438. [28] 梁建宏. 岩溶动力系统土壤钙元素迁移机理初步研究[D]. 广西师范大学, 2010. [29] 孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展[J].中国土壤与肥料, 2011(2):1-9. [30] Scott J T, Condron L M. Dynamics and availability of phosphorus in the rhizosphere of a temperate silvopastoral system[J]. Biology & Fertility of Soils, 2003, 39(2):65-73. [31] Ohno T, Amirbahman A. Phosphorus availability in boreal forest soils: A geochemical and nutrient uptake modeling approach[J]. Geoderma, 2010, 155(1-2):46-54. [32] Tiessen H, Moir J O. Characterization of available P by sequential extraction [M]//Carter M R (eds) Soil sampling and methods of analysis(Second Edition). Pinawa, Manitoba,Boca Raton, FL; CRC Press, 2007: 293-306. [33] 蒋忠诚. 论南方岩溶山区生态环境的元素有效态[J]. 中国岩溶, 2000, 19(2):123-128. [34] Prietzel J, Dümig A, Wu Y, et al. Synchrotron-based P K-edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences [J]. Geochimica et Cosmochimica Acta, 2013, 108: 154-171.
点击查看大图
计量
- 文章访问数: 1899
- HTML浏览量: 445
- PDF下载量: 1320
- 被引次数: 0