Environmental geochemistry characteristics of heavy metals and ecological risk assessment of surface sediments from Nanshan Laolongdong subterranean river, Chongqing
-
摘要: 2013年12月采集了重庆南山老龙洞地下河表层沉积物样品,利用电感耦合等离子体质谱仪(ICP-MS)、电感耦合等离子体发光质谱仪(ICP-OES)分析样品中Mn、Pb、Cu、As和Cr的含量,并用地累积指数法和潜在生态风险指数法对重金属的生态风险进行评估。结果表明:地下河表层沉积物存在重金属富集现象,富集程度依次为Cr>Cu>Mn>Pb>As,其中UGR0处重金属污染相对较严重;地下河表层沉积物重金属含量主要受总有机碳(TOC)控制,与沉积物pH、粒径无显著相关性,TOC也控制着重金属稳定度,影响着重金属的迁移性,进而影响上覆水水质;地累积指数法评价显示地下河表层沉积物重金属整体上处于轻度污染状态,潜在生态风险指数法评价表明老龙洞地下河表层沉积物重金属含量水平引发有害生物效应的可能性不大。Abstract: The surface sediment was collected from a karst subterranean river in Nanshan, Chongqing, in December 2013.These samples were analyzed by using Inductively Coupled Plasma Mass Spectrometry(ICP-MS)and Inductively Coupled Plasma Optical Emission Spectrometry(ICP-OES), respectively, to determine the content of heavy metals(Mn, Pb, Cu, As and Cr)in the sediments. Meanwhile, the geo-accumulation pollution index and potential ecological risk index were used to assess the ecological risk of heavy metals in sediments, so as to provide a scientific basis for the development of urban construction and protection of karst groundwater. Results showed that Mn, Pb, Cu, As and Cr are enriched in Laolongdong subterranean river sediments, with the enrichment of these heavy metals as Cr>Cu>Mn>Pb>As. It was TOC (total organic carbon)that controlled the sediments heavy metal contents, but not pH and particle size of sediments. Meanwhile, TOC also controlled SAC (stability assessment code), which has an effect on the migration of the heavy metals, and influences the quality of overlying water. In general, heavy metals in surface sediments from Laolongdong were in slightly-polluted state evaluated by geo-accumulation pollution index, and implied a low probability of toxic effect evaluated by potential ecological risk index.
-
[1] Burton G A. Metal bioavailability and toxicity in sediments[J]. Critical Reviews in Environmental Science and Technology, 2010, 40(9-10): 852-907. [2] Zoumis T, Schmidt A, Grigorova L, et al. Contaminants in sediments: remobilisation and demobilisation[J]. Science of the Total Environment, 2001, 266(1): 195-202. [3] Daskalakis K D, O'Connor T P. Distribution of chemical concentrations in US coastal and estuarine sediment[J]. Marine Environmental Research, 1995, 40(4): 381-398. [4] Vukosav P, Mlakar M, Cukrov N, et al. Heavy metal contents in water, sediment and fish in a karst aquatic ecosystem of the Plitvice Lakes National Park (Croatia)[J]. Environmental Science and Pollution Research, 2014, 21(5): 3826-3839. [5] Filgueiras A V, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis: a case study[J]. Science of the Total Environment, 2004, 330(s1–3):115-129. [6] Chapman P M, Wang F. Assessing sediment contamination in estuaries[J]. Environmental Toxicology and Chemistry, 2001, 20(1): 3-22. [7] 方淑波, 贾晓波, 安树青, 等. 盐城海岸带土壤重金属潜在生态风险控制优先格局[J]. 地理学报, 2012, 67(1): 27-35. [8] Solomon M M, Jonah A E, Ano A O. Study on the physico-chemical properties and heavy metal status of sediment samples from Ohii Miri river in Abia State, Nigeria[J]. Fountain Journal of Natural and Applied Sciences, 2014, 3(1):29-43. [9] 李杰, 王英辉, 刘枝刚, 等. 漓江桂林市区段沉积物重金属环境地球化学特征[J]. 地球与环境, 2011, 39(4): 456-463. [10] 陈春霄, 姜霞, 战玉柱, 等. 太湖表层沉积物中重金属形态分布及其潜在生态风险分析[J]. 中国环境科学, 2011, 31(11): 1842-1848. [11] Schneider L, Maher W, Potts J, et al. Recent history of sediment metal contamination in Lake Macquarie, Australia, and an assessment of ash handling procedure effectiveness in mitigating metal contamination from coal-fired power stations[J]. Science of The Total Environment, 2014, 490: 659-670. [12] Fan W, Xu Z, Wang W X. Metal pollution in a contaminated bay: Relationship between metal geochemical fractionation in sediments and accumulation in a polychaete[J]. Environmental Pollution, 2014, 191: 50-57. [13] Nabavi S M B, Parsa Y, Hosseini M,et al. Heavy Metal Concentration in Sediment from North of Persian Gulf[J]. World Applied Sciences Journal, 2014, 29(6): 792-795. [14] Ravbar N, Goldscheider N. Comparative application of four methods of groundwater vulnerability mapping in a Slovene karst catchment[J]. Hydrogeology Journal, 2009, 17(3): 725-733. [15] 罗燕, 秦延文, 张雷, 等. 大伙房水库表层沉积物重金属污染分析与评价[J]. 环境科学学报, 2011, 31(5): 987-995. [16] 郭芳, 王文科, 姜光辉, 等. 岩溶地下河污染物运移特征及自净能力[J]. 水科学进展, 2014, 25(3): 414-419. [17] Yang P H, Yuan D X, Ye X C, et al. Sources and migration path of chemical compositions in a karst groundwater system during rainfall events[J]. Chinese Science Bulletin, 2013, 58(20): 2488-2496. [18] Ford D, Williams P D. Karst hydrogeology and geomorphology[J].John Wiley & Sons Inc Press, New York, 2007. [19] 任坤, 师阳, 李晓春, 等. 典型岩溶槽谷区地下水化学特征及地球化学敏感性分析[J]. 中国岩溶, 2014, 33(1):15-21. [20] 任坤, 杨平恒, 江泽利, 等. 降雨期间岩溶城镇区地下河水重金属变化特征及来源解析[J]. 环境科学, 2015, 36(4):1270-1276. [21] 任坤, 杨平恒, 杜伟, 等. 重庆老龙洞地下河间隙水重金属污染及毒性评估[J]. 中国岩溶, 2014, 33(2):231-237. [22] Rauret G, LopezSanchez J F, Sahuquillo A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of Environmental Monitoring, 1999, 1(1): 57-61. [23] Singh K P, Mohan D, Singh V K, et al. Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India[J]. Journal of Hydrology, 2005, 312(1):14-27. [24] Muller G. Index of geoaccumulation in sediments of the Rhine River[J]. Geojournal, 1969, 2(3):108-118. [25] Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. [26] 徐争启, 倪师军, 庹先国, 等. 潜在生态危害指数法评价中重金属毒性系数计算[J]. 环境科学与技术, 2008, 31(2): 112-115. [27] 王健康, 高博, 周怀东, 等. 三峡库区蓄水运用期表层沉积物重金属污染及其潜在生态风险评价[J]. 环境科学, 2012, 33(5): 1693-1699. [28] 任坤, 梁作兵, 于正良, 等. 重庆南山老龙洞地下河系统重金属分布、迁移及自净能力[J]. 环境科学, 2015, 36(11): 162-169. [29] 重庆市环境科研检测所, 西南农学院土化系,西南师范学院环境科研组. 重庆地区土壤中11种元素背景值的调查研究[J]. 重庆环境科学, 1982, (4):4-8. [30] 贾亚男, 袁道先. 土地利用变化对水城盆地岩溶水水质的影响[J].地理学报, 2003, 58(6):831-838. [31] 余辉, 张文斌, 卢少勇, 等. 洪泽湖表层底质营养盐的形态分布特征与评价[J]. 环境科学, 2010, 31(4): 961-968. [32] 吴斌, 宋金明, 李学刚. 黄河口表层沉积物中重金属的环境地球化学特征[J]. 环境科学, 2013, 34(4): 1324-1332. [33] 贺跃, 胡艳华, 王秋潇,等. 大冶大港河水系沉积物中重金属来源分析[J]. 地球化学, 2011, 40(3): 258-265.
点击查看大图
计量
- 文章访问数: 2073
- HTML浏览量: 396
- PDF下载量: 913
- 被引次数: 0