Dominant factors controlling hydrochemical variation of karst underground river in different period, Qingmuguan, Chongqing
-
摘要: 利用多参数水质分析仪,对典型岩溶槽谷区重庆青木关岩溶地下河出口姜家泉的月尺度、农耕期和暴雨期3个不同时间段的水化学动态变化特征进行监测,通过主成分分析法,研究这3个不同时间段水化学变化主导因素的异同。结果表明:月尺度期间,电导率、pH值和Ca2+、Mg2+、K+、Na+、HCO3-受雨水稀释作用,使丰水期低于枯水期;水化学变化主要受5个主成分影响,累积方差贡献率为90.75%,但其主导因素是水-岩作用。农耕期,降雨携带残余的粪肥、氮磷钾肥汇入地下河,电导率和Cl-、NO3-、K+、Na+浓度升高;水化学变化主要受3个主成分影响,累积方差贡献率为87.81%,但其主导因素是施肥活动。暴雨期间,各离子浓度变化经过平稳期、上升期、稳定期、特殊期4个阶段。上升期,降雨对地下河影响最大,导致水-岩作用增强,电导率和Ca2+、HCO3-浓度上升;对地表土壤和化肥的冲刷淋溶作用显著,导致Al、Fe、Cl-、K+、Na+和NO3-浓度明显上升。水化学变化主要受4个主成分影响,累积方差贡献率为80.09%,但其主导因素是水-岩作用、地表土壤和养分流失。Abstract: Hydrochemical variation of Qingmuguan karst underground river in the typical karst valley area was monitored by using multi-parameter water quality analyzer. Dominant factors of the chemical dynamics were studied by principal component analysis method with monitoring data derived from three different time intervals, including that of monthly monitoring, storm event and farming period. Results showed that on a monthly scale, because of the dilution effect due to rainfall, the major underground river constituents such as pH and the concentrations of Ca2+, Mg2+, K+, Na+ and HCO3- were lower at flooding or wet season than those of dry season. The hydrochemical variation was affected by five main components with an accumulated variance contribution rate of 90.75%, of which the dominant factor was identified as the rock-water interaction. In farming period, rainwater carried residual manure and nitrogenous, phosphate and potash fertilizers into the underground river, which resulted in the increase of electrical conductivity (EC) and Cl-, NO3-, K+ and Na+ contents. The hydrochemical variation was affected by three main components, with an accumulated variance contribution rate of 87.81%, of which the dominant factors were rock-water interaction and fertilization. During the storm event, the change of the ionic concentrations could be divided into four stages, including stationary, rising, stable and special periods. During the rising period, rainfall obviously effected on underground river and caused more active rock-water interaction and the increases of EC and the concentrations of Ca2+ and HCO3-. Significant impact of erosion and leaching due to rainfall on topsoil and fertilizers resulted in obvious raises in undergroundriver Al,Fe, Cl-, K+, Na+ and NO3- contents. The hydrochemical variation was affected by four main components with an accumulated variance contribution rate of 80.09%; and the dominant factors could be rock-water interaction, soil erosion and soil nutrient leaching.
-
Key words:
- karst underground river /
- storm event /
- farming period /
- hydrochemistry /
- principal component analysis /
- Qingmuguan
-
[1] Ford D C,Williams P W. Karst geomorphology and hydrology[M]. Chichester,U K: Wiley,2007. [2] 杨明德.论喀斯特环境的脆弱性[J].云南地理环境研究,1990,2(1):21-29. [3] 王焰新,马腾,郭清海,等.地下水与环境变化研究[J].地学前缘,2005,12(4):14-21. [4] 尹文青,谢世友,魏虹,等.重庆市岩溶地区生态系统脆弱性分析[J].环境科学与管理,2009,34(8):133-137. [5] 李晓明.西南岩溶区地下水环境告急[N].中国矿业报,2009-2-24(B03). [6] 袁道先,薛禹群,傅家谟,等.防止我国西南岩溶地区地下河变成“下水道”的对策与建议[J].中国科学院院士建议,2007,14:1-14. [7] 李强,孙海龙,韩军,等.降雨对广西马山兰电堂泉水的水化学动态变化观测研究[J].水科学进展,2006,17(15):733-737. [8] 唐伟,裴建国,殷建军,等.桂林毛村岩溶地下河二十多年来的水质演化趋势研究[J].中国岩溶,2010,29(3):331-336. [9] 杨平恒,袁道先,叶许春,等.降雨期间岩溶地下水化学组分的来源及运移路径[J].科学通报,2013,58(18):1755-1763. [10] 何守阳,朱立军,董志芬,等.典型岩溶地下水系统地球化学敏感性研究[J].环境科学,2010,31(5):1176-1182. [11] 袁道先.岩溶作用对环境变化的敏感性及其记录[J].科学通报,1995,40(13): 1210-1213. [12] 杨平恒,罗鉴银,彭稳,等.在线技术在岩溶地下河示踪试验中的应用:以青木关地下河系统岩口落水洞至姜家泉段为例[J]. 中国岩溶,2008,27(3):215-220. [13] 陈雪彬,杨平恒,蓝家程,等.降雨条件下岩溶地下水微量元素变化特征及其环境意义[J].环境科学,2014,35(1):123-130. [14] 蒲俊兵,袁道先,蒋勇军,等.重庆岩溶地下河水文地球化学特征及环境意义[J].水科学进展,2010,21(5):628-636. [15] 杨杨,唐建生,苏春田,等.岩溶区多重介质水流模型研究进展[J].中国岩溶,2014,33(4):419-424. [16] 袁文昊,贺秋芳,杨平恒,等.典型岩溶槽谷地下河水化学时空变化特征及影响因素初探:以重庆青木关地下河系统为例[J].西南大学学报(自然科学版),2009,31(6):160-164. [17] 邱述兰.利用多同位素(δ15N、δ34S和87Sr/86Sr)方法示踪岩溶农业区地下水中硝酸盐和硫酸盐的污染[D].西南大学,2012. [18] 储亮侪,周金生,董高翔,等.地下水标准检验方法[J].地质实验室,1988,4(1):121-122. [19] Abdi H, Williams L J. Principal component analysis[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2010, 2(4): 433-459. [20] 黄婕,于奭,梁权.多元统计法在河水主要离子含量变化特征及来源分析中的运用:以梧州水文站控制断面为例[J].中国岩溶,2014,33(4):412-418. [21] 杨平恒,贺秋芳,袁文昊,等.以PCA揭示降雨期间岩溶地下水文地球化学的形成[J].科学通报,2010,55(9):788-797. [22] Mohammadi Z,Raeisi E,Bakalowicz M.Evidence of karst from behaviour of the Asmari limestone aquifer at the Khersan 3 Dam site, southern Iran[J]. Hydrological Sciences Journal,2007,52(1):206-220. [23] 刘仙,蒋勇军,叶明阳,等.典型岩溶槽谷区地下河水文动态响应研究:以重庆青木关地下河为例[J].中国岩溶,2009,28(2):149-154. [24] 王心义,韩星霞,刘白宙.岩溶裂隙中承压水紊流运动的解析研究[J].中国岩溶,2003,22(1):47-50. [25] 蒋忠诚,王瑞江,裴建国,等.我国南方表层岩溶带及其对岩溶水的调蓄功能[J].中国岩溶,2001,20(2): 106-110. [26] Jeong C H. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea[J]. Journal of Hydrology,2001,253(1-4):194-210. [27] Chen Z,Grasby S E, Osadetz K G. Relation between climate variability and groundwater levels in the upper carbonate aquifer, southern Manitoba, Canada [J].Journal of Hydrology,2004,290(1):43-62. [28] 张新明,李华兴,刘远金.磷酸盐在土壤中吸附与解吸研究进展[J].土壤与环境,2001,10(1):77-80. [29] 高超,张桃林,吴蔚东.不同利用方式下农田土壤对磷的吸持与解吸特征[J].环境科学,2001,22(4):67-72. [30] Branson K F, Malapati A, Schubert A M, et al. Residual soil nitrate in irrigated Southern High Plains cotton fields and Ogallala groundwater nitrate[J]. Journal of Soil and Water Conservation,2009,64(2):98-104.
点击查看大图
计量
- 文章访问数: 2049
- HTML浏览量: 373
- PDF下载量: 1042
- 被引次数: 0