Computational model of pond re-storage times in karst valley area of Chongqing based on DEM and SCS models
-
摘要: 文章以重庆市九龙坡区中梁村和云峰村两个典型岩溶槽谷区为研究区,通过利用数字高程模型(DEM)划分集水区,依据径流曲线数模型(SCS)模拟降雨径流, CROPWAT8.0计算作物需水量,对该区塘堰灌溉系统进行水量平衡分析,计算得到了塘堰复蓄次数。结果表明:(1)SCS模型推算出研究区的径流系数范围为0.16~0.27,该模型模拟产流合理可靠;(2)在岩溶槽谷区以集水区为单位进行塘堰工程来水计算较以行政区划为单位更为准确;(3)岩溶槽谷地区在枯水年时塘堰对雨水利用效率最高,弃水率最小为50.98%;(4)当降雨频率分别为P=50%、75%和95%时,重庆岩溶槽谷地区相应的塘堰复蓄次数为2.51、2.60和2.12。Abstract: Two typical karst valley areas in Zhongliang and Yunfeng town of Jiu Longpo district, Chongqing are selected as the study area which is located in the middle and east sides of Zhongliangshan Mountains. The study area, with an area of 532.3 hm2 and an elevation ranging from 300 to 700 m above mean sea level, lies between the latitudes of 106°23′49″ to 106°25′06″E and the longitudes of 29°26′20″ to 29°29′47″N. The area falls in humid subtropical monsoon climate region, with an average annual precipitation of about 1,027.3 mm and an average annual temperature of 17.3 ℃. Landform types of the area are karst valley and a typical anticline low mountain, where the soil types include yellow limestone soil, dark purple clay and ore sub soil; and land use patterns are dominated by forest land and upland. Hydrologically, as no main stream and tributary run through the area, pond facilities which impound rainwater have become main sources for irrigation in this area. In fact the use of ponding water has been of significance in small scale water supply and to solve the problem of water shortage in southwest China karst region. The number of pond rainwater re-storage is an important parameter in determining the quantity of water supply. Through the analysis of current problem of irrigation systems and the computation of the number of repeated pond water impoundment, it attempts to provide a scientific guidance for future planning of ponding water system in southwest China karst region. In order to predict the repeated impoundment number, SCS model was used to simulate rainfall runoff and crop water requirement, the latter of which was computed by CROPWAT8.0 in this study. Then a water balance analysis of the pond irrigation system was performed and consequently repeated impoundment number of the ponding system was sorted out. The results showed that, (1) Calculated runoff coefficient of the study area by the SCS model was from 0.16 to 0.27, which suggested that the runoff simulated by the model was reasonable; (2) In karst valley area, it is much better to use a catchment as an analytical unit than an administrative area to calculate water supply of the pond facilities; (3) In the low flow year, rainwater can be most efficiently used by the ponds in the karst valleys with a minimum rate of surplus water as 50.98%; (4) The study area of pond re-storage times were 2.51, 2.60, 2.12 in correspondence to the rainfall frequency of 50%, 75%, 95%, respectively.
-
Key words:
- SCS model /
- DEM /
- catchment /
- pond re-storage times /
- karst valley area of Chongqing
-
[1] 张建新,郑大玮.国内外集雨农业研究进展与展望[J].干旱地区农业研究,2005,23(2):223-229. [2] 孙鸿烈.中国生态系统(下册)[M].北京:科学出版社,2005:12-15. [3] 戴明宏,张军以,王腊春,等.西南岩溶小流域农业可持续发展优化模式研究[J].中国岩溶,2015,34(3):254-259. [4] 袁道先.岩溶地区的地质环境和水文生态问题[J].南方国土资源,2003,(1):22-25. [5] 朱海彬,任晓冬,李开忠.贵州喀斯特地区表层岩溶带水资源开发利用研究[J].中国农村水利水电,2015,(2):60-63,77. [6] 袁道先.我国西南岩溶山地的环境地质问题[J].世界科技研究与发展,1997,19(5):41-43. [7] 仇锦先,罗金耀.新沂山丘区雨水利用蓄水设施复蓄次数的确定[J].水利水电科技进展,2009,29(4):59-62. [8] 蒋尚明,金菊良,许浒,等.基于径流曲线数模型的江淮丘陵区塘堰复蓄次数计算模型[J].农业工程学报,2013,29(18):117-124. [9] 周振民,张淙皎.灌区天然径流计算方法理论研究[J].人民长江,2004,35(2):25-26. [10] 刘家福,蒋卫国,占文凤,等.SCS模型及其研究进展[J].水土保持研究,2010,17(2):120-124. [11] 伍宇春,傅瓦利,程辉,等.岩溶区坡耕地土壤肥力综合评价:以重庆中梁山坡耕地样区为例[J].中国岩溶,2014,33(2):223-230. [12] William J R, Lasear W V. Water yield model using curve numbers[J].Journal of Hydraulics Division,1976,(9):1221-1253. [13] Bosznay,Miklos Generalization of SCS curve number method[J].Journal of Irrigation and Drainage Engineering,1989,115(1):139-144. [14] 徐秋宁,马孝义,安梦雄,等.SCS模型在小型集水区降雨径流计算中的应用[J].西南农业大学学报,2002,24(2):97-100. [15] Mishra, Surendra K, Singh,et al. Long-term hydrological simulation based on the Soil Conservation Service curve number [J]. Hydrological Processes, 2004,18(7): 1291-1313. [16] 周玉良,刘丽,金菊良,等.基于SCS和USLE的程海总磷总氮参照状态推断[J].地理科学,2012,32(6):725-730. [17] 郑长统,梁虹,舒栋才,等.基于GIS和RS的喀斯特流域SCS产流模型应用[J].地理研究,2011,30(1):185-194. [18] 符素华,王向亮,王红叶,等.SCS-CN径流模型中CN值确定方法研究[J].干旱区地理,2012,35(3):415-421. [19] 孙艳玲,谢德体,刘洪斌,等.基于DEM的流域降雨径流模拟研究:以三峡库区晏家河小流域为例[J].水土保持学报,2004,18(1):82-84. [20] 赵晨辉,吴耀国,孙庆义.基于GIS的分布式流域水文模型[J].水资源与水工程学报,2006,17(1):39-43. [21] 刘涓,张仕超,魏朝富.西南丘陵山区塘堰系统对农田水量平衡的局地调控作用[J].水资源与水工程学报,2010,21(3):43-47. [22] 谢立群,郑淑红.作物需水量的计算方法[J].农业与技术,2007,27(1):128-129. [23] 沈冰,黄红虎.水文学原理[M].北京:中国水利水电出版社,2008:14. [24] 李万义.适用于全国范围的水面蒸发量计算模型的研究[J].水文,2000,20(4):13-17. [25] Maidment D R(张建云,李纪生,等译).Handbook of Hydrology[M].北京:科学出版社,2002:178-368. [26] 郑畅,倪九派,魏朝富.基于DEM和SCS模型的四川盆地丘陵区局地径流研究[J].水土保持学报,2008,22(5):73-77. [27] 王庆.江淮丘陵易旱地区塘堰系统可供水量的计算[D].合肥工业大学,2012. [28] 王英,黄明斌.径流曲线法在黄土区小流域地表径流预测中的初步应用[J].中国水土保持科学,2008,12(6):87-91. [29] 贾晓青,杜欣,赵旭峰,等.改进SCS产流模型在岩溶地区径流模拟中的应用[J].人民长江,2008,39(11):25-27. [30] 罗鉴银,谢世友.重庆市水资源供需预测[J].西南师范大学学报(自然科学版),2002,27(4):592-595. [31] 罗志远,罗骏燕,杨全明,等.湿润区水库复蓄系数与库容系数关系研究[J].中国农村水利水电,2011,(3):68-69. [32] 郑祖金,崔远来,董斌,等.灌区塘堰拦蓄地表径流能力的研究[J].中国农村水利水电,2005,(1):39-40.
点击查看大图
计量
- 文章访问数: 2008
- HTML浏览量: 326
- PDF下载量: 1015
- 被引次数: 0