Relationship between soil physicochemical properties and soil enzyme activities in Huixian karst wetland system based on Canonical Correspondence Analysis
-
摘要: 为揭示湿地退化过程中土壤理化性质与土壤酶活性关系,文章以广西桂林市会仙岩溶湿地系统中的湿地、稻田和旱地三种土地利用类型的表层土壤为研究对象,运用描述性分析、相关性分析和典范对应分析(Canonical Correspondence Analysis,CCA)等方法来探讨它们之间的内在联系。结果表明:土壤理化性质除有效磷、速效钾外,土壤有机碳、全氮、碱解氮、阳离子交换量、交换性钙、交换性镁的质量分数均表现为湿地>稻田>旱地,说明岩溶湿地在维持土壤碳库以及营养元素方面具有重要的作用。会仙湿地中有效磷、速效钾的质量分数低于稻田和旱地,根本原因在于人类活动以及农业活动的影响。除蛋白酶外,脲酶、蔗糖酶、碱性磷酸酶和纤维素酶的质量分数均在湿地中最高,与土壤理化性质的质量分数在湿地中较高相吻合,并表现出较强的空间异质性。进一步分析典范对应分析图,可知会仙岩溶湿地受人类活动影响较大,湿地首先被开垦为稻田,随着土壤自然肥力的下降最后被开垦成旱地,因此在生态演替不可逆转的条件下,将稻田作为人工湿地加以保护是维持湿地生态环境最佳的土地利用方式。Abstract: Wetland as an important ecological system plays an important role in regulating water and climate change, which was affected by human activities. Therefore, wetland degradation becomes a global phenomenon and the focus of many scientists. Huixian karst wetland system has the research base for comprehensive control of karst ecology and rocky desertification, belonging to original semi-disturbed wetland where in the past 20 years fertilizers have been applied to paddy field and dry land. In order to reveal the relationship between soil physicochemical properties and soil enzyme activities in Huixian karst wetland system, soil samples from three kinds of lands (wetland, paddy field and dry land) were collected. To gain a better understanding of the impact from the human and agricultural activities on the karst wetland system, a suitable evaluation method based on descriptive analysis, correlation analysis and canonical correspondence analysis (CCA) was employed. The highest content of soil organic carbon, total nitrogen, alkali-hydrolyzable nitrogen, cation exchange capacity, exchangeable calcium and exchangeable magnesium appears in the wetland, followed by the paddy field and dry land, respectively; the lowest content of available phosphorus and potassium occurs in the wetland. Therefore, the karst wetland system has an important function in the maintenance of soil carbon sink and nutrition cycle. The content of available phosphorus and potassium in wetland was lower than those in the paddy field and dry land,which was affected by human and agricultural activities. The concentrations of urease, invertase, alkaline phosphatase and cellulose are also quite high in the wetland and show a strong spatial heterogeneity. By analyzing soil factors and soil enzymes confined to wetland and paddy field of the study area, the CCA biplot shows a trend of land degradation in this area, from which it can be seen that the wetland is influenced by human activities. Wetland was first cultivated as paddy field, later it was eventually reclaimed into dry land with the decline of soil natural fertility. Therefore, among these three types of lands, the wetland has a high carbon storage function, while the paddy field has the similar one. If the ecological succession is irreversible, the best way to maintain the ecological environment of wetland system is to protect paddy field as constructed wetland. It is also important to regulate and promote carbon sequestration in karst area.
-
Key words:
- wetland /
- soil organic carbon /
- land use pattern /
- soil enzyme /
- canonical correspondence analysis
-
[1] Ghermandi A,van den Bergh JCJM,Brander LM,et al.Values of natural and human-made wetlands:A meta-analysis[J].Water Resources Research,2010,46(12):137-139. [2] 郭占平.辽河干流生态综合治理模式及示范应用[J].水利发展研究,2015,15(5):35-38,42. [3] 安娜,高乃云,刘长娥.中国湿地的退化原因、评价及保护[J].生态学杂志,2008,27(5):821-828. [4] 曹萍麟,陆梅,田昆,等.纳帕海高原湿地不同干扰强度下土壤真菌的分布格局[J].植物生态学报,2014,38(11):1166-1173. [5] 刘庆新,吴发启,刘海斌,等.纸坊沟流域土壤酶活性与土壤肥力关系研究[J].植物营养与肥料学报,2009,15(5):1100-1106. [6] 牟晓杰,孙志高,刘兴土.黄河口滨岸潮滩湿地土壤碳、氮的空间分异特征[J].地理科学,2012,32(12):1521-1529. [7] 肖烨,黄志刚,武海涛,等.三江平原4种典型湿地土壤碳氮分布差异和微生物特征[J].应用生态学报,2014,25(10):2847-2854. [8] 蔡德所.会仙岩溶湿地生态系统研究[M].北京:地质出版社,2012. [9] 吴华英,覃星铭,蒋忠诚,等.桂林会仙岩溶作用对石灰土壤水锌离子浓度的影响[J].农业现代化研究,2009,30(6):761-765. [10] 靳振江,程亚平,李强,等.会仙喀斯特溶洞湿地、稻田和旱田土壤有机碳含量及其与养分的关系[J].湿地科学,2014,12(4):485-490. [11] 张维理,徐爱国,张认连,等.土壤分类研究回顾与中国土壤分类系统的修编[J].中国农业科学,2014,47(16):3214-3230. [12] 桂林会仙湿地被列入国家湿地公园试点[EB/OL].[2012-04-09].http:// www.guilin.gov.cn/news/xqdt/2012/04/0903.htm. [13] 毕桂英,马新民.影响石灰性土壤pH值测定因素的探讨[J].水土保持通报,1998, 18(7):24-27. [14] 鲁如坤.土壤化学分析[M].北京:中国农业科技出版社,1999. [15] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:275-276,294-296,310-312. [16] 张金屯.数量生态学[M].北京:科学出版社,2004:157-164. [17] Sun Lina,Chen Su,Chao Lei,et al.Effects of Flooding on Changes in Eh,pH and Speciation of Cadmium and Lead in Contaminated Soil[J].Bulletin of Environmental Contamination and Toxicology,2007,79(5):514-518. [18] 黄靖宇,宋长春,宋艳宇,等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学,2008, 29(5):1380-1387. [19] 孟凡德,姜霞,金相灿.长江中下游湖泊沉积物理化性质研究[J].环境科学研究,2004, 17(S1):24-29. [20] 王笛,马风云,姚秀粉,等.黄河三角洲退化湿地土壤养分、微生物与土壤酶特性及其关系分析[J].中国水土保持科学,2012,10(5):94-98. [21] 王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999. [22] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44. [23] 陈家瑞,曹建华,梁毅,等.石灰土发育过程中土壤腐殖质组成及其与土壤钙赋存形态关系[J].中国岩溶,2012,31(1):7-11. [24] 万忠梅,宋长春,郭跃东,等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报,2008, 28(12):5980-5986. [25] 兰雪,戴全厚,喻理飞,等.喀斯特退化森林不同恢复阶段土壤酶活性研究[J].农业现代化研究,2009,30(5):620-624. [26] 刘淑娟,张伟,王克林,等.桂西北喀斯特峰丛洼地不同植被演替阶段的土壤脲酶活性[J].生态学报,2011,31(19):5789-5796. [27] 徐广平,顾大形,孙英杰,等.不同土地利用方式对桂西南岩溶山地土壤酶活性的影响[J].广西植物,2014, 34(4):460-466. [28] Dick WA,Cheng L,Wang P.Soil acid and alkaline phosphatase activity as pH adjustment indicators[J].Soil Biology & Biochemistry,2000,32(13):1915-1919. [29] 米彩红,刘增文,李茜.黄土丘陵区3种典型人工阔叶纯林枯落物分解对土壤性质极化的影响[J].西北农林科技大学学报(自然科学版),2012,40(7):120-126. [30] 王启兰,王溪,王长庭,等.高寒矮嵩草草甸土壤酶活性与土壤性质关系的研究[J].中国草地学报,2010,32(3):51-56. [31] 章程,谢运球,宁良丹,等.桂林会仙岩溶湿地典型水生植物δ13C特征与固碳量估算[J].中国岩溶,2013, 32(3):247-252. [32] 李强,胡清菁,张超兰,等.基于土壤酶总体活性评价铅锌尾矿砂坍塌区土壤重金属污染[J].生态环境学报,2014,23(11):1839-1844. [33] 杨宁,杨满元,雷玉兰,等.衡阳紫色土丘陵坡地土壤酶活性对植被恢复的响应[J].生态环境学报,2014,23(4):575-580. [34] 曹彤,江源,宋阳,等.陕北种植业土地利用与农业投入关系的典范对应分析[J].资源科学,2005,27(4):56-62. [35] 岳跃民,王克林,张伟,等.基于典范对应分析的喀斯特峰丛洼地土壤-环境关系研究[J].环境科学,2008,29(5):1400-1405. [36] Ter Braak C J F.Canonical correspondence analysis:A new eigenvector technique for multivariate direct gradient analysis[J].Ecology,1986,67(5):1167-1179. [37] Mench M,Bes C.Assessment of ecotoxicity of topsoils from a wood treatment site[J].Pedosphere,2009,19(2):143-155. [38] 汪良奇,张强,萧良坚,等.基于湖积物硅藻与地球化学记录的古环境变迁反演:以桂林会仙岩溶湿地为例[J].中国岩溶,2014,33(2):129-135. [39] 丁长欢,慈恩,邵景安,等.近30年黔西喀斯特区典型县域农田土壤有机碳动态研究:以贵州普定县为例[J].中国岩溶,2015,34(3):281-291. [40] 方芳,靳振江,李强,等.岩溶区与非岩溶区土壤有机碳、养分及特征元素对比研究[J].桂林理工大学学报,2015,已接收. [41] 徐琪.湿地农田生态系统的特点及其调节[J].生态学杂志,1989, 8(3):8-13,23. [42] 邱峰.百万亩水稻田纳入湿地保护[EB/OL].[2011-10-28] http://www.nb.suzhou.gov.cn/newsview.asp? id=1359. [43] Ghermandi A,van den Bergh JCJM,Brander LM,et al.Values of natural and human-made wetlands:A meta-analysis[J].Water Resources Research,2010,46(12):137-139. [44] 郭占平.辽河干流生态综合治理模式及示范应用[J].水利发展研究,2015,15(5):35-38,42. [45] 安娜,高乃云,刘长娥.中国湿地的退化原因、评价及保护[J].生态学杂志,2008,27(5):821-828. [46] 曹萍麟,陆梅,田昆,等.纳帕海高原湿地不同干扰强度下土壤真菌的分布格局[J].植物生态学报,2014,38(11):1166-1173. [47] 刘庆新,吴发启,刘海斌,等.纸坊沟流域土壤酶活性与土壤肥力关系研究[J].植物营养与肥料学报,2009,15(5):1100-1106. [48] 牟晓杰,孙志高,刘兴土.黄河口滨岸潮滩湿地土壤碳、氮的空间分异特征[J].地理科学,2012,32(12):1521-1529. [49] 肖烨,黄志刚,武海涛,等.三江平原4种典型湿地土壤碳氮分布差异和微生物特征[J].应用生态学报,2014,25(10):2847-2854. [50] 蔡德所.会仙岩溶湿地生态系统研究[M].北京:地质出版社,2012. [51] 吴华英,覃星铭,蒋忠诚,等.桂林会仙岩溶作用对石灰土壤水锌离子浓度的影响[J].农业现代化研究,2009,30(6):761-765. [52] 靳振江,程亚平,李强,等.会仙喀斯特溶洞湿地、稻田和旱田土壤有机碳含量及其与养分的关系[J].湿地科学,2014,12(4):485-490. [53] 张维理,徐爱国,张认连,等.土壤分类研究回顾与中国土壤分类系统的修编[J].中国农业科学,2014,47(16):3214-3230. [54] 桂林会仙湿地被列入国家湿地公园试点[EB/OL].[2012-04-09].http:// www.guilin.gov.cn/news/xqdt/2012/04/0903.htm. [55] 毕桂英,马新民.影响石灰性土壤pH值测定因素的探讨[J].水土保持通报,1998, 18(7):24-27. [56] 鲁如坤.土壤化学分析[M].北京:中国农业科技出版社,1999. [57] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:275-276,294-296,310-312. [58] 张金屯.数量生态学[M].北京:科学出版社,2004:157-164. [59] Sun Lina,Chen Su,Chao Lei,et al.Effects of Flooding on Changes in Eh,pH and Speciation of Cadmium and Lead in Contaminated Soil[J].Bulletin of Environmental Contamination and Toxicology,2007,79(5):514-518. [60] 黄靖宇,宋长春,宋艳宇,等.湿地垦殖对土壤微生物量及土壤溶解有机碳、氮的影响[J].环境科学,2008, 29(5):1380-1387. [61] 孟凡德,姜霞,金相灿.长江中下游湖泊沉积物理化性质研究[J].环境科学研究,2004, 17(S1):24-29. [62] 王笛,马风云,姚秀粉,等.黄河三角洲退化湿地土壤养分、微生物与土壤酶特性及其关系分析[J].中国水土保持科学,2012,10(5):94-98. [63] 王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1999. [64] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44. [65] 陈家瑞,曹建华,梁毅,等.石灰土发育过程中土壤腐殖质组成及其与土壤钙赋存形态关系[J].中国岩溶,2012,31(1):7-11. [66] 万忠梅,宋长春,郭跃东,等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报,2008, 28(12):5980-5986. [67] 兰雪,戴全厚,喻理飞,等.喀斯特退化森林不同恢复阶段土壤酶活性研究[J].农业现代化研究,2009,30(5):620-624. [68] 刘淑娟,张伟,王克林,等.桂西北喀斯特峰丛洼地不同植被演替阶段的土壤脲酶活性[J].生态学报,2011,31(19):5789-5796. [69] 徐广平,顾大形,孙英杰,等.不同土地利用方式对桂西南岩溶山地土壤酶活性的影响[J].广西植物,2014, 34(4):460-466. [70] Dick WA,Cheng L,Wang P.Soil acid and alkaline phosphatase activity as pH adjustment indicators[J].Soil Biology & Biochemistry,2000,32(13):1915-1919. [71] 米彩红,刘增文,李茜.黄土丘陵区3种典型人工阔叶纯林枯落物分解对土壤性质极化的影响[J].西北农林科技大学学报(自然科学版),2012,40(7):120-126. [72] 王启兰,王溪,王长庭,等.高寒矮嵩草草甸土壤酶活性与土壤性质关系的研究[J].中国草地学报,2010,32(3):51-56. [73] 章程,谢运球,宁良丹,等.桂林会仙岩溶湿地典型水生植物δ13C特征与固碳量估算[J].中国岩溶,2013, 32(3):247-252. [74] 李强,胡清菁,张超兰,等.基于土壤酶总体活性评价铅锌尾矿砂坍塌区土壤重金属污染[J].生态环境学报,2014,23(11):1839-1844. [75] 杨宁,杨满元,雷玉兰,等.衡阳紫色土丘陵坡地土壤酶活性对植被恢复的响应[J].生态环境学报,2014,23(4):575-580. [76] 曹彤,江源,宋阳,等.陕北种植业土地利用与农业投入关系的典范对应分析[J].资源科学,2005,27(4):56-62. [77] 岳跃民,王克林,张伟,等.基于典范对应分析的喀斯特峰丛洼地土壤-环境关系研究[J].环境科学,2008,29(5):1400-1405. [78] Ter Braak C J F.Canonical correspondence analysis:A new eigenvector technique for multivariate direct gradient analysis[J].Ecology,1986,67(5):1167-1179. [79] Mench M,Bes C.Assessment of ecotoxicity of topsoils from a wood treatment site[J].Pedosphere,2009,19(2):143-155. [80] 汪良奇,张强,萧良坚,等.基于湖积物硅藻与地球化学记录的古环境变迁反演:以桂林会仙岩溶湿地为例[J].中国岩溶,2014,33(2):129-135. [81] 丁长欢,慈恩,邵景安,等.近30年黔西喀斯特区典型县域农田土壤有机碳动态研究:以贵州普定县为例[J].中国岩溶,2015,34(3):281-291. [82] 方芳,靳振江,李强,等.岩溶区与非岩溶区土壤有机碳、养分及特征元素对比研究[J].桂林理工大学学报,2015,已接收. [83] 徐琪.湿地农田生态系统的特点及其调节[J].生态学杂志,1989, 8(3):8-13,23. [84] 邱峰.百万亩水稻田纳入湿地保护[EB/OL].[2011-10-28] http://www.nb.suzhou.gov.cn/newsview.asp? id=1359.
点击查看大图
计量
- 文章访问数: 2225
- HTML浏览量: 377
- PDF下载量: 1381
- 被引次数: 0