Coupled fluid flow and dissolution model and associated parameter sensitivity analysis in a single carbonate rock fracture
-
摘要: 岩溶地下水系统是由碳酸盐岩裂隙含水介质演化形成的,系统初始的裂隙网络介质特征及边界条件决定了其演化过程。为揭示岩溶系统演化过程中裂隙介质特征和边界条件的影响程度,建立了裂隙溶蚀扩展的渗流-溶蚀耦合模型,并对不同边界条件下不同隙宽的单裂隙溶蚀扩展特征进行了模拟分析。结果表明:裂隙溶蚀扩展受水的侵蚀性(CO2分压)、水动力条件(水力梯度)、裂隙介质特征(裂隙初始隙宽)等综合作用影响,Ca2+的平衡浓度、水力梯度以及裂隙初始隙宽等参数的增加均能促进裂隙的快速扩展。在这些参数中,初始隙宽B0对岩溶发育的影响最为敏感,水力梯度J和Ca2+平衡浓度Ceq对岩溶发育具有相同的敏感性;此外,随着各参数值的不断增大,参数变化对岩溶发育的敏感程度越来越低。Abstract: Karst groundwater system is evolved from fracture water bearing medium of carbonate rock; the evolution process of this system is determined by the initial fracture network characters and boundary conditions. In order to reveal the influence degree of fracture medium and boundary conditions on the evolution of karst system, the fracture dissolution model which coupled fluid flow and dissolution was established, and the characteristics of single fracture propagation under different boundary conditions were simulated and analyzed. The results show that the increase of fracture aperture due to karst water dissolution process, rise of hydraulic gradient, initial fracture aperture and equilibrium calcium concentration will accelerate the karst evolution. Among these parameters the initial fracture aperture influences the process most significantly, while hydraulic gradient and equilibrium calcium concentration have the same remarkable impact. Moreover, with the increase of the parameter values, the parameter sensitivity gets much smaller.
-
Key words:
- fluid flow and dissolution model /
- water head boundary /
- flow boundary /
- sensitive factor
-
[1] 袁道先.我国岩溶资源环境领域的创新问题[J]. 中国岩溶, 2015, 34(2): 98-100. [2] 袁道先.新形势下我国岩溶研究面临的机遇和挑战[J]. 中国岩溶, 2009, 28(4): 329-331. [3] 梁永平,王维泰,赵春红,等.中国北方岩溶水变化特征及其环境问题[J]. 中国岩溶,2013,32(1): 34-42. [4] 袁道先,刘再华,林玉石,等. 中国岩溶动力系统[M]. 北京; 地质出版社,2002: 100-108. [5] 薛亮, 于青春. 岩溶水系统演化中河间地块分水岭消失过程的数值模拟分析[J]. 水文地质工程地质, 2009,36(2): 7-12. [6] 王云, 于青春, 薛亮,等. 裂隙岩溶含水系统溢流泉演化过程的数值模拟[J]. 中国岩溶,2010,29(4): 378-384. [7] 王喆, 卢丽, 夏日元,等. 岩溶地下水系统演化的数值模拟[J]. 长江科学院院报, 2013, 30(4):201-206. [8] Dreybrodt W, Romanov D, Kaufmann G. Evolution of isolated caves in porous limestone by mixing corrosion: A model approach[J]. Geologia Croatica, 2010, 63(2):129-135. [9] Gabrov?ek F, Dreybrodt W. Karstification in unconfined limestone aquifers by mixing of phreatic water with surface water from a local input: a model [J]. Journal of Hydrology, 2010, 386(1): 130-141. [10] Snow D T. A parallel plate model of fractured permeable media[D]: University of California, Berkeley, 1965. [11] 速宝玉, 詹美礼. 光滑裂隙水流模型实验及其机理初探[J]. 水利学报, 1994,(5): 19-24. [12] Gabrov?ek F, Dreybrodt W. A model of the early evolution of karst aquifers in limestone in the dimensions of length and depth[J]. Journal of Hydrology, 2001,240(3-4): 206-224. [13] Dreybrodt W, Gabrov?ek F. Basic processes and mechanisms governing the evolution of karst[J]. Evolution of karst: from prekarst to cessation Postojna-Ljubljana: Zalozba ZRC, 2002: 115-154. [14] Gabrov?ek F, Romanov D, Dreybrodt W. Early karstification in a dual-fracture aquifer: the role of exchange flow between prominent fractures and a dense net of fissures[J]. Journal of Hydrology, 2004,299(1-2): 45-66. [15] Gabrov?ek F, Menne B, Dreybrodt W. A model of early evolution of karst conduits affected by subterranean CO2 sources[J]. Environmental Geology, 2000, 39(6): 531-543. [16] 速宝玉, 张文捷, 盛金昌,等. 渗流-化学溶解耦合作用下岩石单裂隙渗透特性研究[J]. 岩土力学, 2010, 31(11): 3361-3366. [17] 武亚遵, 万军伟, 林云,等. 岩溶演化过程中含水介质的时空变化特征研究[J]. 河南理工大学学报:自然科学版, 2015, 34(2):216-221.
点击查看大图
计量
- 文章访问数: 1953
- HTML浏览量: 351
- PDF下载量: 1334
- 被引次数: 0