Effects of heterogeneity of karst media on the hydrochemical parameters from vertical borehole logs
-
摘要: 岩溶介质具有较强的非均质性,其地表及地下的岩溶结构形态多样。通过对钻孔结构描述、钻孔水物化性质分析,不仅能够掌握区域上岩溶含水层的结构特征,而且对于岩溶地下水演化过程的揭示亦有重要作用。文章以桂林岩溶水文地质试验场西南部峰丛山区与峰林平原交界处的钻孔为例,通过野外便携式多参数仪原位测试钻孔垂向水物化指标(pH值、水温T、电导率EC),探索浅部(地面以下约50 m内)地下岩溶较为发育条件下钻孔水物化指标的垂向变化特征,揭示岩溶介质非均质性对钻孔垂向水物化指标的影响。结果表明:岩溶地区小范围内不同钻孔间的水物化性质有所差异,且岩溶发育相似的钻孔(如ZK4/ZK5、ZK7/ZK8),其水物化指标垂向变化具有一定的相似性,但不同指标(T、pH、EC)的变化幅度存在差异;钻孔水物化性质受到试验场区岩溶介质结构非均质性的控制,即岩溶介质结构影响了地下水的赋存条件和水力联系而导致水物化性质的差异;在对岩溶地区地下水物化性质进行研究时应充分考虑岩溶介质的非均质性特征,根据实际的水文地质条件选取具有代表性的钻孔含水段进行取样和监测。
-
关键词:
- 岩溶介质 /
- 非均质性 /
- 钻孔水物化指标垂向变化 /
- 水力联系 /
- 桂林岩溶水文地质试验场
Abstract: Karst media are highly heterogeneous, which has been manifested both on surface and subsurface.In general,the description of rock formation and the analyses of physical and chemical properties of a borehole groundwater may help to understand the structural features of an aquifer and associated ground water evolution. This study is conducted on the basis of groundwater vertical logging data derived from the boreholes situated on the border between peak cluster mountain area and peak forest-plain in the southwest of Guilin Karst Experimental Site. On this site, the influence of the heterogeneity of karst media on physical and chemical indexes of the aquifer by using portable multi-parameter device which basically logged pH, temperature (T), electrical conductivity (EC)at different holes. The results showed that in the small-scale karstic aquifer,the physical and chemical properties measured in-situ are different across the area; and these parameters obviously varied at depth in one borehole.Moreover, it is noted that the groundwater in the boreholes with analogously karstified conditions shows similar properties which suggests that the heterogeneity of the karst mediahas an influence on the groundwater occurrence and hydraulic connection. This should be fully taken into account during the research of karst groundwater and associated aquifer properties; and the groundwater sampling and monitoring can be focused on the conductive zones in the boreholes, in order to reflect flow dynamics and hydrogeological setting of karst aquifer. -
[1] Yuan D X. On the heterogeneity of karst water[C]//Proceedings of the Ankara-Antalya symposium on karst water resources. IAHS Publ, 1985, (161):281-292. [2] Ford D, Williams P. Karst Hydrogeology and Geomorphology[M]. UN: John Wiley & Sons, Ltd, 2007: 1-502. [3] 袁道先, 戴爱德, 蔡五田, 等. 中国南方裸露型岩溶峰丛山区岩溶水系统及其数学模型的研究:以桂林丫吉村为例[M]. 桂林: 广西师范大学出版社, 1996: 88-118. [4] 朱学稳. 桂林岩溶地貌与洞穴研究[M]. 北京: 地质出版社, 1988: 55-167. [5] Goldscheider N, David D. Methods in Karst Hydrogeology: IAH: International Contributions to Hydrogeology, 26[M]. CRC Press, 2007:1-262. [6] Gutiérrez F, Parise M, Waele J D, et al. A review on natural and human-induced geohazards and impacts in karst[J]. Earth-Science Reviews, 2014, 138: 61-88. [7] Zhang Z C, Chen X, Chen X H, et al. Quantifying time lag of epikarst-spring hydrograph response to rainfall using correlation and spectral analyses[J]. Hydrogeology Journal, 2013, 21(7):1619-1631. [8] Kogovsek J, Petric M. Solute transport processes in a karst vadose zone characterized by long-term tracer tests (the cave system of Postojnska Jama, Slovenia)[J]. Journal of Hydrology, 2014, 519:1205–1213. [9] 姜光辉, 郭芳, 于奭. 岩溶水系统的水化学曲线及其在水文地质研究中的应用[J]. 吉林大学学报(地球科学版), 2015, 3: 899-907. [10] Rongier G, Collon-Drouaillet P, Filipponi M. Simulation of 3D karst conduits with an object-distance based method integrating geological knowledge[J]. Geomorphology, 2014, 217(13):152-164. [11] Ronayne M J. Influence of conduit network geometry on solute transport in karst aquifers with a permeable matrix[J]. Advances in Water Resources, 2013, 56(2):27-34. [12] Hartmann A, Goldscheider N, Wagener T, et al. Karst water resources in a changing world: Review of hydrological modeling approaches[J]. Reviews of Geophysics, 2014, 52(3):218-242. [13] 郭纯青, 时坚, 裴建国. 岩溶地下水系统中快速流与慢速流的模拟[J]. 中国岩溶, 1985,4 (4). 315-323 [14] 郭纯青, 李文兴, 王刚, 等. 岩溶含水介质与地下水系分维理论研究[M]. 桂林: 广西师范大学出版社, 1996,1-68. [15] 束龙仓, 张颖, 鲁程鹏. 管道-裂隙岩溶含水介质非均质性的水文效应[J]. 南水北调与水利科技, 2013, (1):115-121. [16] Wu Y X, Hunkeler D. Hyporheic exchange in a karst conduit and sediment system – A laboratory analog study[J]. Journal of Hydrology, 2013, 501:125-132. [17] 刘再华, 李强, 汪进良, 等. 桂林岩溶试验场钻孔水化学暴雨动态和垂向变化解译[J]. 中国岩溶, 2004, 23(3):169-176. [18] 任坤, 师阳, 李晓春, 等. 典型岩溶槽谷区地下水化学特征及地球化学敏感性分析[J]. 中国岩溶, 2014,33 (1): 15-21. [19] 周文亮, 姜光辉, 陈国富, 等. 桂林硝盐洞滴水水文和水化学动态变化特征[J]. 中国岩溶, 2013, 33(1): 51-56. [20] 中国气象局. 中国气象数据共享服务网[EB/OL].(2013-10-1). http://cdc.cma.gov.cn/home.do [21] 刘再华. 桂林岩溶水文地质试验场岩溶水文地球化学的研究[J]. 中国岩溶, 1992, (3):209-217. [22] 刘再华, Chris GROVES, 袁道先, 等. 水-气-岩相互作用引起的水化学动态变化研究:以桂林岩溶试验场为例[J]. 水文地质工程地质, 2003, (4): 13-18. [23] 刘再华, 袁道先, 何师意. 岩溶动力系统水化学变化规律分析[J]. 中国岩溶, 1999, 18(2): 103-108. [24] 袁道先. 论岩溶水的不均匀性[C]//岩溶地区水文地质及工程地质工作经验汇编(第二辑). 北京: 地质出版社, 1978, 1-19 [25] 袁道先. 岩溶水非均质性程度差异的产生条件[C]//中国地质学会第二届岩溶学术会议论文选集. 北京: 科学出版社, 1982, 77-85 [26] 陈建生, 王媛, 赵维炳. 钻孔与岩体裂隙斜交渗流场井流理论与示踪方法研究[J]. 水利学报, 1999, 0(12):43-47. [27] Harris R N, Chapman D S. Borehole temperatures and a baseline for 20th-Century global warming estimates[J]. Science, 1997, 275(5306):1618-21. [28] Mann M E, Schmidt G A. Ground vs. surface air temperature trends: Implications for borehole surface temperature reconstructions[J]. Geophysical Research Letters, 2003, 30(12):9.DOI: 10.1029/2003GL017170 [29] Huang S, Pollack&Amp H N, Shen P Y. Temperature trends over the past five centuries reconstructed from borehole temperatures[J]. Nature, 2000, 403(6771):756-758.
点击查看大图
计量
- 文章访问数: 2125
- HTML浏览量: 332
- PDF下载量: 1353
- 被引次数: 0