Is it karst carbon sink or karst carbon flux?
-
摘要: 大气碳收支不平衡问题是全球碳循环研究的核心问题之一,决定了人类活动导致的气候变化速度和程度。在过去50年,陆地和海洋作为全球碳循环的主要汇呈增加趋势,而岩溶作用 (CaMg(CO3)2 + 2 CO2 + 2 H2O? Ca2+ + Mg2+ + 4 HCO3-)则通过与岩石圈、水圈、大气圈(层)的密切联系成为联系陆地和海洋碳库的纽带。尽管岩溶作用在水循环和生物圈的作用下,每年可产生约8亿t的碳通量,使岩溶作用过程成为全球碳循环的一个重要环节。但在目前研究技术手段和认识水平的条件下,将岩溶作用这一可逆过程直接认定为岩溶碳汇有不妥之处。因此,在没有涉及生物固碳效应的前提下,应当将岩溶作用参与的碳循环表述为岩溶碳通量。Abstract: Imbalanced atmospheric carbon flow has been a critical problem in the study of global carbon cycle since the 1970s, which has attracted a lot of attentions from policy makers and scientists. After investigating the global carbon budgets, it is cognized that the assessed carbon sink has tended to increase globally in the past 50 years, which largely take place in terrestrial and oceanic ecosystems. In a karst process (CaMg(CO3)2 + 2CO2 + 2H2O?Ca2++ Mg2++4HCO3-), the HCO3-which connects the lithosphere, hydrosphere and atmosphere becomes a part of the carbon pool of the terrestrial ecosystem and ocean. Recent research proved that global karst carbon flux is around 8×108 tons per annum. Because of the complexity of carbon cycles in the karst process, there are many difficulties to confirm the existence of karst carbon sink, or to determine the location and causes of karst carbon sink. Therefore, it is suggested to use the correct depiction for the study of karst carbon cycle and its geological function, which may contribute to karst dynamic theory.
-
Key words:
- karst /
- carbon sink /
- carbon flux /
- carbon cycle
-
[1] 於琍,朴世龙.IPCC第五次评估报告对碳循环及其他生物地球化学循环的最新认识[J].气候变化研究进展,2014,(1):33-36. [2] Houghton R A,Davidson E A,Woodwell G M.Missing sinks,feedbacks,and understanding the role of terrestrial ecosystems in the global carbon balance[J].Global Biogeochemical Cycles,1998,(12):25-34. [3] Liu Z H,Wolfgang D,Wang H J.A new direction in effective accounting for the atmospheric CO2 budget:Considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J].Earth Science Reviews,2010,99(3-4):162-172. [4] 蒋忠诚,袁道先,曹建华,等.中国岩溶碳汇潜力研究[J].地球学报,2012,(2):129-134. [5] Christina L.An unsung carbon sink[J].Science,2011,334(6058):886-887. [6] Groves C,Cao J H,Zhang C.Responsecarbon shifted but not sequestered[J].Science,2012,335(6069):655. [7] Rane L C.Carbon shifted but not sequestered[J].Science,2012,335(6069):655. [8] 袁道先,章程.岩溶动力学的理论探索与实践[J].地球学报,2008,29(3):355-365. [9] Kyoto Protocol [EB/OL].www.un.org/law/avl.1997. [10] Watson A.The global survey of pCO2[J].IGBP Global Change Newsletter,1999,37:6-7. [11] Legrand H E.Hydrological and ecological problems of karst regions-hydrological actions on limestone regions cause distinctive ecological problems[J].Science,1973,179(4076):859-864. [12] 袁道先.岩溶作用对环境变化的敏感性及其记录[J].科学通报,1995,40(13):1210-1213. [13] 袁道先.地球系统的碳循环和资源环境效应[J].第四纪研究,2001,(3):223-232. [14] 袁道先,刘再华,蒋忠诚.碳循环与岩溶地质环境[M].北京:科学出版社,2003. [15] 刘再华,袁道先,Dreybrodt W,等.四川黄龙钙华的形成[J].中国岩溶,1983,12(3):185-191. [16] John P D,Michel M,James C O,et al.Land and water interface zones[J].Water Air and Soil Pollution,1993,70(1-4):123-137. [17] Semiletov I P.Aquatic sources and sinks of CO2 and CH4 in the polar regions[J].Journal of the Atmospheric Sciences,1999,56:286-306. [18] Ritschard R L.Marine algae as a CO2sink[J].Water Air and Soil Pollution,1992,64(1-2):289-303. [19] Siegenthaler U,Sarmiento J L.Atmospheric carbon dioxide and the ocean[J].Nature,1993,365:119-125. [20] John J W.Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen[J].Nature,1991,350:53-55. [21] Donat P H,Kumar H D,Smith R C,et al.Aquatic ecosystems:effects of solar ultraviolet radiation and interactions with other climatic change factors[J].Photochemistry and Photobiology Sciences,2003,2:39-50. [22] Bulthuis D A.Effects of temperature on the photosynthesis-irradiance curve of the Australian seagrass,Heterozostera tasmanica[J].Marine Biology Letters,1983,4(1):47-57. [23] Maberly S C.Photosynthesis by fontinalis antipyretica.Part 1,Interaction between photon irradirance,concentration of carbon dioxide and temperature[J].New Phytologist,1985,100(2):127-140. [24] White A,Reiskind J B,Bowes G.Dissolved inorganic carbon influences the photosynthetic responses of Hydrilla to photoinhibitory conditions[J]. Aquatic Botany,1996,53 (1-2):3-13. [25] Richard A L.Rain might be leading carbon sink factor[J].Science,2002,296(5574):1787. [26] Waidner L A,Kirchman D L.Aerobic anoxygenic phototrophic bacteria attached to particles in turbid maters of the Delaware and Chesapeake estuaries[J].Applied and Environmental Microbiology,2007,73 (12):3936-3944. [27] Shi L,Cai Y,Chen Z,et al.Diversity and abundance of aerobic anoxygenic phototrophic bacteria in two cyanobacterial bloom-forming lakes in China[J].In Annales de Limnologie-International Journal of Limnology,2010,46(4):233-239. [28] Dittrich M,Obst M.Are picoplankton responsible for calcite precipitation in lakes? [J].Ambio,2004,33(8):559-64. [29] Bristow T F,Kennedy M J,Morrison K D,et al.The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates[J].Geochimica et Cosmochimica Acta,2012,90(4),64-82. [30] Smith M E,Carroll A R,Scott J J,et al.Early Eocene carbon isotope excursions and landscape destabilization at eccentricity minima:Green river formation of Wyoming[J].Earth and Planetary Science Letters,2014,403,393-406. [31] Li Q,Wang H,Jin Z J,et al.The carbon isotope fractionation in the atmosphere-soil-spring system associated with CO2-fixation bacteria at Yaji karst experimental site in Guilin,SW China[J]. Environmental Earth Sciences,2015,74(6):5393-5401. [32] Ge Tida,Wu X H,Chen X J,et al.Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils[J].Geochimica et Cosmochimica Acta,2013,113(4):70-78. [33] Degens E T,Kempe S,Spitey A.CO2:A biogeochemical portrait [M].The Handbook of environmental Chemical,Vol 1.Berlin:Spinger-Verlag,1984:127-251.
点击查看大图
计量
- 文章访问数: 2181
- HTML浏览量: 371
- PDF下载量: 2378
- 被引次数: 0