• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶洞穴次生碳酸盐沉积铀及其同位素组成古气候环境研究进展

陈 琼 陈 琳 黄嘉仪 刘淑华 杨 亮 米小建 周厚云

陈 琼, 陈 琳, 黄嘉仪, 刘淑华, 杨 亮, 米小建, 周厚云. 岩溶洞穴次生碳酸盐沉积铀及其同位素组成古气候环境研究进展[J]. 中国岩溶, 2015, 34(5): 479-485. doi: 10.11932/karst20150508
引用本文: 陈 琼, 陈 琳, 黄嘉仪, 刘淑华, 杨 亮, 米小建, 周厚云. 岩溶洞穴次生碳酸盐沉积铀及其同位素组成古气候环境研究进展[J]. 中国岩溶, 2015, 34(5): 479-485. doi: 10.11932/karst20150508
CHEN Qiong, CHEN Lin, HUANG Jia-yi, LIU Shu-hua, YANG Liang, MI Xiao-jian, ZHOU Hou-yun. Progress in the study of paleoclimate reconstruction from speleothem uranium and its isotope[J]. CARSOLOGICA SINICA, 2015, 34(5): 479-485. doi: 10.11932/karst20150508
Citation: CHEN Qiong, CHEN Lin, HUANG Jia-yi, LIU Shu-hua, YANG Liang, MI Xiao-jian, ZHOU Hou-yun. Progress in the study of paleoclimate reconstruction from speleothem uranium and its isotope[J]. CARSOLOGICA SINICA, 2015, 34(5): 479-485. doi: 10.11932/karst20150508

岩溶洞穴次生碳酸盐沉积铀及其同位素组成古气候环境研究进展

doi: 10.11932/karst20150508
基金项目: 国家自然科学基金项目(41473093,41271212,40973009)、教育部博士点基金项目(20124407110012)和中国科学院黄土与第四纪地质国家重点实验室开放基金项目(SKLLQG1431)

Progress in the study of paleoclimate reconstruction from speleothem uranium and its isotope

  • 摘要: 洞穴沉积铀含量及其同位素初始234U/238U[(234U/238U)0]变化均与过去气候环境变化关系密切。文章分别对石笋中U含量和(234U/238U)0的气候意义进行统计分析发现,多数研究认为洞穴沉积U含量和(234U/238U)0可能指示土壤湿度和有效降水变化。然而,不管是对洞穴沉积的U含量还是(234U/238U)0,其气候环境意义解读还存在两种观点。但无论如何,这些研究成果都显示了洞穴沉积的U含量和(234U/238U)0是研究过去气候环境变化的重要替代指标。在未来的研究中,除了土壤环境和过程,还应关注U来源的相对贡献变化和其他微量元素与U元素的关系。这一指标可能在对东亚地区的大气粉尘活动和冬季风演化、地表生物量的变化研究等方面发挥重要作用。

     

  • [1] 史维浚.铀水文地球化学原理 [M]. 北京:原子能出版社, 1990:15-18.
    [2] Gascoyne, M. Geochemistry of the actinides and their daughters. In: Harmon, R.S. (Ed.), Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences [M]. Oxford, Clarendon Press,1992:910.
    [3] Langmuir D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits [J]. Geochimica et Cosmochimica Acta, 1978,42(6):547-569.
    [4] Bonotto D M, Andrews J N. The mechanism of 234U/238U activity ratio enhancement in karstic limestone groundwater [J]. Chemical Geology, 1993,103(1):193-206.
    [5] 张虎才.元素表生地球化学特征及理论基础 [M]. 兰州:兰州大学出版社, 1997:28.
    [6] Zhou H Y, Chi B Q, Lawrence M, et al. High resolution and precisely dated record of weathering and hydrological dynamics recorded by manganese and rare earth elements in a stalagmite from central China [J]. Quaternary Research, 2008,68(3):438-446.
    [7] Zhou H Y, Wang Q, Zhao J X, et al. Rare earth elements and yttrium in a stalagmite from central China and potential paleoclimatic implications [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008,270(1):128-138.
    [8] Zhou H Y, Greig A, Tang J, et al. Rare earth element patterns in a Chinese stalagmite controlled by sources and scavenging from karst groundwater [J]. Geochimica et Cosmochimica Acta,2012,83:1-18.
    [9] Frumkin A, Stein M. The Sahara-East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem [J]. Earth Planetary Science Letters, 2004, 217(3-4):451-464.
    [10] Hellstrom J C, McCulloch M T. Multi-proxy constraints on the climatic significance of trace element records from a New Zealand speleothem [J]. Earth Planetary Science Letters, 2000, 179(2):287-298.
    [11] 况润元,汪永进,张向华.石笋铀同位素组成对土壤环境变化的指示[J].科学通报, 2002,47(13):1022-1026.
    [12] Zhou J Z,Lundstrom C C,Fouke B,et al. Geochemistry of speleothem records from southern Illinois: development of (234U)/ (238U) as a proxy for paleoprecipitation [J]. Chemical Geology,2005, 221(1):1-20.
    [13] 米小建, 刘淑华, 杨亮, 等. 43~17ka川东北石笋234U/238U变化及其意义初探[J]. 第四纪研究, 2015,35(1): 240-241.
    [14] 董进国,刁伟,孔兴功.湖北三宝洞石笋238U 值变化的古气候意义[J]. 海洋地质与第四纪地质,2013,33(1):129-135.
    [15] Mcgarry S F, Baker A. Organic acid fluorescence: application to speleothem palaeoenvironmental reconstruction [J]. Quaternary Science Reviews, 2000,19(11):1087-1101.
    [16] Swift M J, Heal O W, Anderson J M. Decomposition in Terrestrial Ecosystems [M]. London, Blackwell Scientific Publications,1979:35-107.
    [17] Christ M J, David M B. Temperature and moisture effects on the production of dissolved organic carbon in a spodosol [J]. Soil Biology and Biochemistry, 1996,28(9):1191-1199.
    [18] Martin-Neto L, Rosell R, Sposito G. Correlation of spectroscopic indicators of humification with mean annual rainfall along a temperate grassland climosequence [J]. Geoderma, 1998,81(3):305-311.
    [19] Kaufman A, Wasserburg G J, Porcelli D, et al. U-Th isotope systematics from the Soreq cave, Israel and climatic correlations [J]. Earth Planetary Science Letters, 1998,156 (3):141-155.
    [20] Ayalon A, Bar-Matthews M, Kaufman A. Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel [J]. Holocene, 1999, 9(6):715-722.
    [21] Veizer J. Chemical diafenesis of carbonates: theory and application of trace element technique [M]. In: Arthur, M A, et al. (Ed.), Stable isotopes in sedimentary geology, SEPM short course, 1983, 10.
    [22] Fairchild I J, Treble P C. Trace elements in speleothems as recorders of environmental change [J]. Quaternary Science Reviews, 2009, 28(5): 449-468.
    [23] Thurber D L, Edwards J E, Achor R W P. Secondary malignant tumors of the pericardium [J]. Circulation, 1962, 26(2):228-241.
    [24] Osmond J K, Cowart J B, Ivanovich M. Uranium isotopic disequilibrium in ground water as an indicator of anomalies [J]. The International Journal of Applied Radiation and Isotopes, 1983, 34 (1):283-308.
    [25] Osmond J K, Cowart J B. U-series nuclides as tracers in groundwater hydrology [J]. Environmental Tracers in Subsurface Hydrology, 2000,32(3):145-174.
    [26] Osmond J K, Cowart J B. Groundwater. In: Harmon R.S. (Ed.), Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental sciences [M]. Oxford, Clarendon Press, 1992: 910.
    [27] Tricca A, Porcelli D, Wasserburg G J. Factors controlling the groundwater transport of U, Th, Ra, and Rn [J]. Journal of Earth System Science, 2000, 109(1):95-108.
    [28] Tricca A, Wasserburg G J,Porcelli D, et al. The transport of U- and Th-series nuclides in a sandy unconfined aquifer [J].Geochimica et Cosmochimica Acta, 2001, 65(8):1187-1210.
    [29] 杨琰, 袁道先, 程海,等.洞穴石笋初始234U/238U值变化的古气候记录意义[J]. 地质学报, 2008,82(5): 692-701.
    [30] Zhao J, Xia Q, Collerson K D. Timing and duration of the Last interglacial inferred from high resolution U-series chronology of stalagmite growth in Southern Hemisphere [J]. Earth and Planetary Science Letters, 2001,184(3-4):635-644.
    [31] Plagnes V,Causse C,Genty D,et al. A discontinuous climatic record from 187 to 74 ka from a speleothem of the Clamouse Cave (south of France) [J].Earth and Planetary Science Letters, 2002,201(1):87-103.
    [32] Baker A, Smart P L. Annual growth banding in a cave stalagmite [J]. Nature, 1993, 364(6437):518-520.
    [33] Genty D, Quinif Y.Annually Laminated Sequences in the Internal Structure of Some Belgian Stalagmites-Importance for Paleoclimatology [J].SEPM Journal of Sedimentary Research, 1996, 66(1):275-288.
    [34] Wang X, Auler A S, Edwards R L, et al, Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies [J]. Nature, 2004, 432(7018):740-743.
    [35] Zhou H Y, Feng Y X, Zhao J X, et al. Deglacial variations of Sr and 87Sr/86Sr ratio recorded by a stalagmite from Central China and their association with past climate and environment[J].Chemical Geology,2009, 268(3-4):233-247.
    [36] Orland I J, Burstyn Y, Bar-Matthews M, et al. Seasonal climate signals (1990-2008) in a modern Soreq Cave stalagmite as revealed by high-resolution geochemical analysis[J]. Chemical Geology, 2014, 363: 322-333.
    [37] Treble P C, Shelley J M G,Chappell J. Comparison of high resolution sub-annual records of trace elements in a modern (1911-1992) speleothem with instrumental climate data from southwest Australia[J]. Earth and Planetary Science Letters,2003, 216(1-2):141-153.
    [38] Jerden J L , Sinha A K. Phosphate based immobilization of uranium in an oxidising bedrock aquifer[J]. Applied Geochemistry, 2003, 18(6):823-843.
    [39] Sanding A,Bruno J. The solubility of (UO2)3(PO4)2·4H2O(s) and the formation of U (VI) phosphate complexes: Their influence in uranium speciation in natural waters [J]. Geochimica et Cosmochimica Acta, 1992, 56(12):4135-4145.
    [40] Wassenburg J A, Immenhauser A, Richter D K, et al. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: Elemental and isotopic evidence[J]. Geochimica et Cosmochimica Acta, 2012, 92: 23-47.
    [41] Fairchild I J, Baker A, Borsato A, et al. Annual to sub-annual resolution of multiple traceelement trends in speleothems[J]. Journal of the Geological Society, 2001, 158(5): 831-841.
  • 加载中
计量
  • 文章访问数:  2361
  • HTML浏览量:  344
  • PDF下载量:  1480
  • 被引次数: 0
出版历程
  • 发布日期:  2015-10-25

目录

    /

    返回文章
    返回