Preliminary research on dissolution of carbonate rocks and major element release under the conditions of stagnant water and dripping water
-
摘要: 为进一步了解在静水和滴水条件下碳酸盐岩溶解与主要元素释放规律,文章选取在贵阳市花溪区贵州大学南校区、将军山、花溪水库三地分别采集的白云岩、灰质白云岩、石灰岩三类碳酸盐岩石为样本进行静水浸泡和动水滴溅试验,测定了静水与滴水条件下碳酸盐岩石的钾、磷、钙、镁四种主要元素的溶解量,结果表明:(1) 在相同室温25 ℃,浸泡时长到达20 d时,白云岩中四种元素溶解量均为最高,钾元素溶解量为0.001 38 μg/cm3、磷元素溶解量为0.000 6 μg/cm3、钙元素溶解量为199.75 μg/cm3、镁元素溶解量为70 μg/cm3,且三种碳酸盐岩石的钙元素溶解量分别为白云岩199.75 μg/cm3,灰质白云岩148.42 μg/cm3,石灰岩137.88 μg/cm3,远远高于其他三种元素的溶解量;(2)经过不同温度浸泡24 h后,三类碳酸盐岩石中钾元素的溶解量随温度的升高而增大,并且在10~20 ℃条件下钾元素溶解速率最大,但温度的变化对于磷元素的溶解量影响不大;岩样养分含量中白云岩的钾元素与石灰岩的磷元素含量最少,但是随着温度的升高,它们的溶解量却是最大的;(3)静水浸泡状态下白云岩中元素的溶解量多数较高,而在动水滴溅状态中除白云岩的镁元素比石灰岩和灰质白云岩的镁元素溶解量高,试验的其他三种元素钾、磷、钙元素中都是石灰岩溶解量高;在动水滴溅的作用下,随着滴溅时间的增加,石灰岩的钙元素溶解量仅1 h的滴溅时间就增加了2.55倍,超过了白云岩的钙元素溶解量。Abstract: To further understand the dissolution of carbonate rock and the release of the major elements under the different conditions of stagnant and dripping water, three types of carbonate rock samples, i.e. dolomite, calcite dolomite, and limestone, were collected from Guizhou University South Campus in Huaxi district of Guiyang City, Jiangjun hill and Huaxi reservoir, respectively, to conduct the tests of soaking them in stagnant water and splashing them by dripping water. The dissolution of four major elements potassium (as K), phosphorus (as P), calcium (as Ca) and magnesium (as Mg) for each type of rock under each condition were measured. The results showed that: (1) at the same temperature 25 ℃, when soaking for 20 days, the highest dissolved amount on all four elements occurred in dolomite, i.e. K-0.00138μg/cm3, P-0.0006 μg/cm3, Ca-199.75 μg/cm3 and Mg-70 μg/cm3. Also, the dissolution of Ca were the highest in all three types of carbonate rocks, i.e. 199.75 μg/cm3in dolomite, 148.42 μg/cm3in calcite dolomite and 137.88 μg/cm3in limestone, which was far higher than other three elements. (2) When soaking at different temperatures, the dissolution of K increased with temperature in all three types of carbonate rocks. At the temperature between 10 ℃ and 20 ℃, the dissolution rate of K reached to the maximum, while the dissolution of P showed very little response to temperature change. In terms of the constituent contents in the samples,K in dolomite and P in limestone had the lowest value; however, their dissolution was the largest when temperature increases.(3) Under the condition of rock soaking in stagnant water, the dissolution of most elements in dolomite was higher than other two types of carbonate rock. However, under the condition of splashing by dripping water, the dissolution of Mg was higher in dolomite than in calcite dolomite and limestone while the dissolution of all other three elements was higher in limestone. Under the condition of dripping water, with the increase of dripping time, the dissolution of Ca had increased by 2.55 times in one hour, which far exceeded the dissolution of Ca in dolomite.
-
Key words:
- carbonate /
- stagnant water immersion /
- water splash /
- nutrient release
-
[1] 莫彬,曹建华,徐祥明,等.岩溶石漠化演替阶段土壤质量退化的预警指标评价[J].水土保持研究,2007, 14(3):16-18. [2] 冯志刚,马强,李石朋,等.模拟不同气候条件下碳酸盐岩风化作用的淋溶实验研究[J].中国岩溶,2012,31(4):361-376. [3] 孙承兴,王世杰,刘秀明,等.碳酸盐岩风化壳岩-土界面地球化学特征及其形成过程:以贵州花溪灰岩风化壳剖面为例[J].矿物学报,2002,22(2):126-132. [4] 李景阳,朱立军,梁风.碳酸盐岩风化壳界面土层的结构和矿物学特征[J].中国岩溶,2000,19(4):301-307. [5] 朱立军,李景阳.岩溶环境中岩-土界面方解石的表面化学特征及其反应机理[J].中国岩溶,1997,16(1):19-23. [6] 李明琴,张竹如,王智勇,等.用岩-土显微特征示踪碳酸盐岩母岩的成土过程:以贵阳市大山洞岩土剖面为例[J].地球与环境,2005,33(4):77-82. [7] Merino E, Banerjee A. Terra rossa genesis, implications for karst , and eolian dust: a geodynamic thread[J].The Journal of Geology,2008,116(1):62-75. [8] 杨平恒,罗鉴银,袁道先,等.降雨条件下岩溶槽谷泉水的水文地球化学特征[J].水利学报,2009,40(1):67-74. [9] 王全九,王文焰,沈冰,等.降雨-地表径流-土壤溶质相互作用深度[J].土壤侵蚀与水土保持学报, 1998, 4(2):41-46. [10] 王全九,邵明安,李占斌,等.黄土区农田溶质径流过程模拟方法分析[J].水土保持研究,1999,6(2):67-71,104. [11] 王全九,沈晋,王文焰,等.降雨条件下黄土坡面溶质随地表径流迁移实验研究[J].水土保持学报, 1993,7(1):11-17,52. [12] 王全九,王文焰,沈晋.黄土坡面溶质径流迁移的对流质量传递模型 [J].水土保持研究,1994,1(5): 12-15. [13] 王全九,沈冰,王文焰.降雨动能对溶质径流过程影响的实验研究[J].西北水资源与水工程,1998, 9(1):17-21. [14] 王全九,张江辉,丁新利,等.黄土区土壤溶质径流迁移过程影响因素浅析[J].西北水资源与水工程, 1999,10(1):9-13. [15] 陈武,任明强,芦正艳,等.贵州典型喀斯特区土壤地球化学特征研究[J].中国岩溶,2010,29(3):246-252. [16] 王世杰,季宏兵,欧阳自远,等.碳酸盐岩风化成土作用的初步研究[J].中国科学(D辑),1999,29(5):441-449. [17] 王德炉,朱守谦,黄宝龙.石漠化过程中土壤理化性质变化的初步研究[J].山地农业生物学报, 2003,22(3) :204-207. [18] 熊康宁,黎平,周忠发.喀斯特石漠化的遥感G1S典型研究:以贵州省为例[M].北京: 地质出版社,2002:26-28, 45. [19] 王数,东野光亮.地质学与地貌学教程[M].北京:中国农业大学出版社,2005:61-63. [20] 赵洋毅,周运超,段旭.黔中喀斯特地区不同岩性土壤的抗蚀抗冲性研究[J].安徽农业科学,2007, 35(29):9311-9313,9317. [21] 王尚彦,况顺达,戴传固,等.白云岩和石灰岩山区石漠化速度差异原因分析[J].贵州地质,2009, 26(1):49-51. [22] 曹建华,袁道先,潘根兴.岩溶生态系统中的土壤[J].地球科学进展,2003,18(1):37-44. [23] 蒋忠诚.岩溶动力系统中的元素迁移[J].地理学报,1999,54(5):438-444.
点击查看大图
计量
- 文章访问数: 2346
- HTML浏览量: 439
- PDF下载量: 1500
- 被引次数: 0