Dynamics of soil organic carbon in cropland of karst regions in western Guizhou Province during last 30 years: A case study of Puding county, Guizhou Province
-
摘要: 文章选取贵州省普定县作为黔西喀斯特区的典型县域,依据1980年第二次土壤普查数据和2011年实测土壤数据,运用土壤类型法,计算该县域近30年(1980-2011年)农田表层(0~20 cm)土壤有机碳(SOC)储量和密度的变化,并借助逐步回归分析,对该县域近30年农田表层SOC动因进行分析,结果表明:(1)普定县近30年来农田0~20 cm表土有机碳库总体表现为基本持平且略有上升的趋势,增幅为0.95%,年均变化量15.31 kg C·hm-2·a-1;(2)不同类型农田土壤的表层有机碳储量和密度变化较大,其中水稻土固碳幅度最大,为28.95%,而山地灌丛草甸土的丢碳最为严重,降幅达70.22%;(3)农田表层SOC密度年均变化量在空间分布上总体表现为县城中部、南部和三岔河及夜郎湖地区呈增加趋势,而在县城以西、以东及斗篷山大部分区域则为下降态势,这主要受土壤类型空间分布差异所致;(4)影响普定县农田表层SOC变化的主要因素有SOC密度初始值(1980年)、C/N、砾石体积比和速效K密度等,其中SOC密度年均变化量与SOC密度初始值和砾石体积比呈负相关,与C/N和速效K密度呈正相关。总的来看,近30年的人为活动对普定县农田表土有机碳总库存未产生负面影响。Abstract: Puding, a typical county in the karst region of western Guizhou Province, was selected as the study area. According to the data collected from the second soil survey of Puding county in 1980 and the cropland soil survey of Puding county in 2011, this work calculated the variation in soil organic carbon (SOC) storage and density of cropland topsoil (0 to 20 cm) in Puding county in the past 30 years (from 1980 to 2011). The soil-type classification method and the stepwise regression analysis method were used to analyze the factors affecting the SOC stock change in cropland topsoil of Puding county. The results show that,(1)The SOC stock of cropland topsoil in Puding county increased slightly from 1980 to 2011. Average SOC density for all the cropland topsoil in this area increased by 0.95%, and its average annual variation was 15.31 kg C·hm-2·a-1 from 1981 to 2011. (2)The changes of SOC density and storage in cropland topsoil were larger in soil of different types, where the biggest carbon sequestration was paddy soil, accounting for 28.95%, while the carbon lost was mostly mountain shrub meadow soil, accounting for 70.22%.(3)In general, the spatial distribution of SOC density average annual variation shows an increasing trend in central and southern Puding county and the Sancha river and Yelang lake area, while a decreasing trend in the east and west of the county and most regions of Cape mountain, which was mainly affected by the differences of soil types. (4)The major factors affecting the SOC change in cropland topsoil of Puding county include the initial value of SOC density (1980a), C/N, gravel volume ratio, and available K density. Moreover, C/N and available K density have a positive effect, while the effects of the initial value of SOC density and gravel volume ratio are negative function. In conclusion, the effect of human activities on the SOC stock in cropland topsoil of Puding county is positive in the recent 30 years. Results of this paper identify the dynamic changes and impact factors of cropland topsoil organic carbon pool in Puding county, and the available data would provide a basis for the effective management of cropland topsoil SOC carbon pool in the karst regions of western Guizhou Province.
-
Key words:
- cropland /
- soil organic carbon /
- Puding /
- karst /
- storage
-
[1] 赵生才.我国农田土壤碳库演变机制及发展趋势:第236次香山科学会议侧记[J]. 地球科学进展,2005,20(5):587-590. [2] Rosenzweig C, Hillel D. Soils and global climate change: challenges and opportunities [J]. Soil Science, 2000,165(1):47-56. [3] 潘根兴, 李恋卿, 郑聚锋, 等. 土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J]. 土壤学报,2008,45(5): 901-914. [4] 李典友, 陈良松, 李军, 等. 霍山县县域范围内不同空间尺度下农田土壤有机碳变异分析[J]. 地理研究,2012,31(9):1571-1579. [5] 程先福, 史学正, 于东升, 等. 江西兴国县农田土壤固碳潜力20a变化研究[J]. 应用与环境生物学报,2007,13(1):37-40. [6] 罗怀良, 王慧萍, 陈浩. 川中丘陵地区近25年来农田土壤有机碳密度变化:以四川省盐亭县为例[J]. 山地学报, 2010, 28(2):212-217. [7] 廖洪凯, 龙健, 李娟, 等. 喀斯特地区不同植被下小生境土壤矿物组成及有机碳含量空间异质性初步研究[J]. 中国岩溶,2010,29(4): 434-439. [8] 严宁珍, 杨剑虹, 屈明, 等. 渝东南岩溶山地土地利用方式对土壤有机碳时空分布特征的影响[J]. 中国岩溶, 2012, 31(1): 36-39.〖JP〗 [9] 魏亚伟, 苏以荣, 陈香碧, 等. 人为干扰对喀斯特土壤团聚体及其有机碳稳定性的影响[J]. 应用生态学报,2011,22(4):971-978. [10] 熊康宁, 周文龙, 龙健, 等. 喀斯特石漠化综合治理区表层土壤有机碳时空动态特征与趋势探讨[J]. 中国岩溶,2011,30(4):383-390. [11] 李阳兵, 王世杰, 王济. 岩溶生态系统的土壤特性及其今后研究方向[J]. 中国岩溶,2006,25(4):285-289. [12] 白占国, 万国江. 贵州碳酸盐岩区域的侵蚀速率及环境效应研究[J]. 土壤侵蚀与水土保持学报, 1998, 4(1): 1-7, 46. [13] 兰安军, 张百平, 熊康宁, 等. 黔西南脆弱喀斯特生态环境空间格局分析[J]. 地理研究,2003,22(6): 733-741. [14] 李龙波, 刘涛泽, 李晓东, 等. 贵州喀斯特地区典型土壤有机碳垂直分布特征及其同位素组成[J]. 生态学杂志,2012, 31(2): 241-247. [15] 邵景安, 惠辽辽, 慈恩, 等. 1980—2011年川东平行岭谷区农田土壤有机碳动态[J]. 生态学报,2014, 34(15): 4347-4360. [16] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社,2000. [17] Ci E, Yang L Z. Paddy soils continuously cultivated for hundreds to thousands of years still sequester carbon[J]. Acta Agriculturae Scandinavica, Section B-Soil & Plant Science,2013, 63(8): 694-703. [18] 惠辽辽,邵景安,慈恩,等.近30a贵州遵义县农田土壤有机碳动态及影响因素分析[J]. 自然资源学报,2014,29(4): 653-665. [19] 张勇, 史学正, 赵永存, 等. 滇黔桂地区土壤有机碳储量与影响因素研究[J]. 环境科学,2008,29(8): 2314-2319. [20] 高岩红. 普定县农田土壤有机碳库演变特征及影响因素研究[D]. 重庆:西南大学,2014. [21] 梁二, 蔡典雄, 代快, 等. 中国农田土壤有机碳变化:Ⅰ驱动因素分析[J]. 中国土壤与肥料,2010(6):80-86. [22] 耿远波, 章申, 董云社, 等. 草原土壤的碳氮含量及其与温室气体通量的相关性[J]. 地理学报,2001, 56(1): 44-53. [23] 韩新辉, 杨改河, 佟小刚, 等. 黄土丘陵区几种退耕还林地土壤固存碳氮效应[J]. 农业环境科学学报,2012, 31(6): 1172-1179. [24] 任书杰, 曹明奎, 陶波. 陆地生态系统氮状态对碳循环的限制作用研究进展[J]. 地理科学进展,2006,25(4): 58-67. [25] 吕国红, 周莉, 赵先丽, 等. 芦苇湿地土壤有机碳和全氮含量的垂直分布特征[J]. 应用生态学报,2006, 17(3): 384-389. [26] 祖元刚, 李冉, 王文杰, 等. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J]. 生态学报,2011, 31(8): 5207-5216. [27] 丁访军, 高艳平, 周凤娇, 等. 贵州西部4种林型土壤有机碳及其剖面分布特征[J]. 生态环境学报,2012,21(1): 38-43. [28] 姜勇, 庄秋丽, 梁文举. 农田生态系统土壤有机碳库及其影响因子[J]. 生态学杂志,2007,26(2): 278-285. [29] Drenovsky R E, Graham K J, Scow K M. Soil water content and organic carbon availability are major determinants of soil microbial community composition[J]. Microbial Ecology,2004, 48(3): 424-430
点击查看大图
计量
- 文章访问数: 1845
- HTML浏览量: 333
- PDF下载量: 1064
- 被引次数: 0