Distribution characteristics and influence factors of the ammonia, nitrite and nitrate in the Lijiang River, Guilin City
-
摘要: 文章为确定漓江桂林市区段三氮含量的变化趋势及其影响因素,分丰水期和枯水期在漓江干流及其支流上选择7个断面分别进行了取样,通过现场水化学指标和室内化验,对研究区三氮含量的时空分布特征和影响因素进行了探讨。分析结果表明:研究区漓江干流上C(NH3-N)和C(NO3--N)的最高值分别为0.248 3mg/L和2.251 7 mg/L,满足地表水环境质量Ⅱ类水标准,但漓江在经过研究区后三氮含量呈升高趋势;三氮含量的季节分布特征为NH3-N和NO3--N含量枯水期明显高于丰水期,而NO2--N含量枯水期略低于丰水期,丰枯季节水温的变化会影响总无机氮(TIN)中各种形态氮含量的比例,使得C(NH3-N)/ C(TIN)由丰水期的4.83%提高到枯水期的6.69%;流经农村生活区和农业地区的桃花江和小东江等支流是区内NH3-N的主要污染源,降雨后NH3-N的含量会明显升高。因此,加强区内漓江支流的综合治理、开展降雨条件下饮用水水源地取水口NH3-N含量的实时监测非常必要。Abstract: The Lijiang River, an internationally famous karst scenic area, is the main source for massive water supply to Guilin City. It is reported that ammonia is one of three major nitrogenous contaminants, according to the monitoring data derived from 962 water stream sections in ten first catchments across China. To determine the temporal and spatial distribution characteristics of ammonia-nitrite-nitrate and associated influential factors, 7 sections on the Lijiang River and its tributaries are selected. The samples of surface water were collected during the wet and dry seasons, respectively. The analytical results of field chemical/physical parameters and laboratory experiments show that the highest concentrations of NH3-N and NO3--N are 0.248 3 mg/L and 2.251 7 mg/L, respectively, which fall in the range of gradeⅡwater recommended by the national environmental surface water quality standards. The concentration of NO3--N is also below the limit requirement of surface water sources for collective drinking water supply. However, the results also show that the ammonia-nitrite-nitrate concentrations in the Lijiang River have increased by various degrees and the water has a tendency of deterioration after the river flows through the Guilin City. The temporal distribution characteristics of ammonia-nitrite-nitrate is that the concentrations of NH3-N and NO3--N are higher during dry seasons and the concentration of NO2--N becomes higher during wet seasons, The ratio of C(NH3-N)/ C(TIN) is 4.83% in wet seasons; and the figure rises to 6.69% in dry seasons because of temperature change. The increasing of ammonia nitrite and nitrate nitrogen is attributed to the additional pollutants contributed from the tributaries of the river such as Xiaodongjiang river and Taohuajiang river, which are flowing through the rural domestic and agricultural area where is lack of sanitation facilities. In addition, the concentration of NH3-N has a raising trend and the concentration of NO2--N and NO3--N is almost steady when it rains or during flood seasons because of agricultural non-point sources. Therefore, it is necessary to control and manage the contaminant inflow from the tributaries of the Lijiang River in a comprehensive manner and develop a real-time network to monitor the water sources area, especially monitor the NH3-N concentration fluctuation in rainy season.
-
Key words:
- Lijiang River /
- Guilin /
- three nitrogen /
- water pollution /
- surface water
-
[1] 俞盈,付广义,陈繁忠,等. 水体中三氮转化规律及影响因素研究[J].地球化学,2008,37(6):565-571. [2] 中华人民共和国环境保护部.2014年上半年全国环境质量状况[R].http://www.mep .gov.cn/gkml/hbb/bgg/201408/t20140804_287384.htm [3] 潘春玲,陆燕勤,李军朝.桂林漓江水环境问题及其对策分析[C].华南青年地学学术研讨会论文集,2006:386-388. [4] 黄常晋.桂林岩溶环境水文地质与水资源保护研究[R]. 桂林:中国地质科学院岩溶地质研究所,1984. [5] 梁小红.桂林漓江的水污染及治理措施[J].广西水利水电,1998,(2):48-50. [6] 成官文,王敦球. 漓江水问题及其防治对策[J].中国岩溶,1998, 17(4):351-356. [7] 唐荣华. 桂林市供水水源地现状与保护对策[J].桂林工学院学报,2005,25(4):432-436. [8] 李永军,刘俊,蒋亚萍,等. 桂林市区饮用水水源地保护研究[J].桂林工学院学报,2002,22(4):466-468. [9] 国家技术监督局.中华人民共和国国家标准GB 3838-2002 地表水环境质量标准[S].2002,04. [10] 沈威,胡继伟,谢伟芳,等. 百花湖水体氮的空间分布研究[J].中国岩溶,2012,31(1):74-80. [11] 高梦南.地表水中含氮化合物变化及迁移规律初探 [J].环境科学与技术,2011,34(12):100-102. [12] 何大为,丁廷华,赵振华.河水中无机氮化合物转化规律的研究[J].环境科学,1979,(3):28-32. [13] Antoniou P, Hamilton J, Koopman B, et al. Effect of temperature and pH on the effective maximum specific growth rate of nitrifying bacteria[J]. Water Research, 1990,24(1):97-101. [14] Malecki L M,White J R,Reddy K R. Nitrogen and phosphorus flux rates from sediment in the Lower St.Johns River estuary [J] . Journal of Environmental of Quality , 2004 , 33 (4):1545-1549. [15] 王开然,郭芳,姜光辉,等. 桂林峰林平原区岩溶含水层氮污染空间分布特征[J].环境科学研究,2013,26(3):281-286. [16] 李恭臣,夏兴辉. 黄河无机氮形态组成影响因素的灰色关联度分析[J].北京师范大学学报,2005,41(6):632-635. [17] 孙锦宜. 含氮废水处理技术与应用[M]. 北京:化学工业出版社,2003. [18] 国家环境保护总局. 水和废水监测分析方法[M]. 北京:中国环境科学出版社,2002. [19] 张占平. 水体中氨氮污染来源及其控制[J].内蒙古环境科学,2008,20(5):71-72. [20] 叶桂忠,刘俊. 漓江桂林市区段水环境容量研究[J].水资源保护,2003,(3):10-12,15. [21] 喻泽斌,王敦球. 漓江水环境质量现状评价[J].桂林工学院学报,2003,23(1):68-71.
点击查看大图
计量
- 文章访问数: 1662
- HTML浏览量: 345
- PDF下载量: 1839
- 被引次数: 0