Chaos analysis and prediction of monthly runoff time series in the Nandong subterranean river
-
摘要: 利用基于相空间重构技术、混沌识别与预测理论对1993-2013年南洞地下河月径流时间序列的非线性特征进行了分析,由所获得的延迟时间和最佳嵌入维数实现了月径流时间序列的相空间重构,运用饱和关联维数法和小数据量法计算出南洞地下河月径流时间序列的饱和关联维数和最大Lyapunov指数,并运用Volterra模型对南洞地下河月径流时间序列进行了多步预测研究。研究结果表明,南洞地下河月径流时间序列相空间重构的延迟时间和最佳嵌入维数分别为τ=5、m=8,饱和关联维数D和最大Lyapunov指数λ分别为4.63、0.748 9,从定性和定量的角度证明了南洞地下河月径流时间序列具有弱混沌特征。Volterra自适应滤波模型的预测结果能较好地表征南洞地下河月径流的变化趋势和规律,对18个月内的短期预测精度较高,模拟效果较好。
-
关键词:
- 月径流 /
- 相空间重构 /
- 混沌时间序列 /
- Volterra预测模型 /
- 南洞地下河
Abstract: In order to provide scientific evidence for the development and utilization of water resources in the Nandong area,this study analyzes the nonlinear features of monthly runoff series of the subterranean river from 1990 to 2013. It is based on the phase space reconstruction theory and chaos theory. The optimal embedding dimension and time delay for the real monthly runoff series are determined using the improved false nearest neighbor method and mutual information method,respectively. And the saturation correlation dimension and the largest Lyapunov exponent for the series are calculated to distinguish its chaotic characteristics by using the Grassberger-Procaccia method and small data sets. According to Volterra series theory,a prediction model is established to describe the changes of monthly runoff series of the Nandong subterranean River in the future. The results show that the time delay and optimal embedding dimension τ=5 and m=8, respectively. The saturation correlation dimension of attractor of phase space is 4.63 and the maximum Lyapunov index is 0.748 9. The results also indicate that the monthly runoff series in the Nandong subterranean river has a weak chaotic characteristic in both quality and quantity. The model using the third-order Volterra adaptive filter is effective to predict hydrologic chaotic time series in the study area. It is accurate enough for monthly precipitation forecasting,especially for short-term precipitation forecasting within 18 months. -
[1] 王红瑞,宋宇,刘昌明,等. 混沌理论及在水科学中的应用与存在的问题[J].水科学进展,2004,15(3):400-407. [2] Bof L H,Pruski F F,Da Silva L M,et al . Analysis of appropriate timescale for water diversion permits in Brazil[J]. Environmental Management,2013,51(2):492-500. [3] 李新杰,胡铁松,郭旭宁,等.不同时间尺度的径流时间序列混沌特性分析[J].水利学报,2013,44(5):515-520. [4] 蒋传文,侯志俭,李涛,等.基于小波分解的径流非线性预测[J].上海交通大学学报,2002,36(7):1053-1056. [5] Ghorbani M A,Kisi O,Aalinezhad M. A probe into the chaotic nature of daily stream flow time series by correlation dimension and largest Lyapunov method[J]. Applied Mathematical Modeling,2010,34(12) : 4050-4057. [6] 桑秀丽,苏俞真,肖汉杰,等. 基于0-1 测试方法的含噪声降雨-径流时间序列混沌特征分析[J].云南大学学报:自然科学版,2014,36(2):233-240. [7] 王文圣,向红莲,赵东. 水文序列分形维数估计的小波方法[J].四川大学学报(工程科学版),2005,37(1):1-4. [8] 姜翔程. 基于Volterra自适应方法的水文混沌时间序列预测[J]. 数理统计与管理,2015,34(3):434-441 [9] 刘祖涵. 塔里木河流域气候—水文过程的复杂性与非线性研究[D]. 上海:华东师范大学,2014. [10] 桑燕芳, 王中根, 刘昌明. 水文时间序列分析方法研究进展. 地理科学进展, 2013, 32(1):20-30. [11] 温忠辉,任化准,束龙仓,等. 岩溶地下河日流量预测的小样本非线性时间序列模型[J]. 吉林大学学报(地球科学版),2011,41(2):455-464. [12] 覃星铭,蒋忠诚,蓝芙宁,等.南洞地下河最枯径流的周期变化及趋势分析[J].广西师范大学学报自然科学版,2015,33(2):120-126. [13] 覃星铭,蒋忠诚,何丙辉,等. 南洞流域东部重点区的石漠化现状及治理对策分析[J].中国岩溶,2014,33(4):456-463. [14] 高明刚.云南南洞岩溶地下水温度场时空变化规律研究[J].中国岩溶,1995,14(1):19-29. [15] 张贵,周翠琼,康晓波.云南开远南洞地下河水质演变特征[J].中国岩溶,2008,27(4):366-370. [16] 康彦仁,梁彬.云南南洞地下河系统的水文地质特征[J].水文地质工程地质,1996,(4):28- 30. [17] 马祖陆.云南南洞地下河流域地貌特征及地下河发育演化的初步研究[J].中国岩溶,1993,12(3): 273- 283. [18] 姜翔程.水文时间序列的混沌特性及预测方法[M].北京:中国水利水电出版社,2011. [19] 林振山.长期预报相空间理论和模式[M].北京:气象出版社,1993. [20] 李彦彬,黄强,徐建新,等. 河川径流混沌特征及预测理论与实践[M]. 北京: 中国水利水电出版社,2011,44-51. [21] 汤琳,杨永国.混沌时间序列分析及应用研究[J].武汉理工大学学报,2010,32(19):189-192. [22] 吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002:29-48. [23] 杜杰,曹一家,刘志坚,等.混沌时间序列的局域高阶volterra滤波器多步预测模型[J].物理学报,2009,58(9):5997-6005. [24] 张家树,肖先赐. 用于混沌时间序列自适应预测的一种少参数二阶Volterra滤波器[J].物理学报,2001,50(7):1248-1254. [25] 孟庆芳,张强,牟文英.混沌时间序列多步自适应预测方法[J].物理学报,2006,55(4):1666 -1671.
点击查看大图
计量
- 文章访问数: 1791
- HTML浏览量: 355
- PDF下载量: 1813
- 被引次数: 0