Inversion characteristics of high-density resistivity method on karst conduits at varied depths
-
摘要: 高密度电法在岩溶区找水具有很好的效果,岩溶山区岩溶管道深度各异,为了探寻岩溶管道深度变化下高密度电阻率的响应规律,本文以高密度电阻率法原理为基础,采用高密度电阻率法微测系统,利用铜柱体模型,模拟均匀介质下不同深度岩溶管道的高密度电阻率响应特征。结果表明:当岩溶管道深度大于15倍电极距时,矩形AMN装置和滚动MNB装置未能探测到该深度的岩溶管道;当岩溶管道深度小于10~11倍电极距时,矩形AMN和滚动MNB装置联合能较精准地定位岩溶管道在平面上的投影位置;岩溶管道反演异常的横向宽度始终大于真实异常横向宽度,反演异常顶部埋深小于或等于真实异常顶部埋深,且岩溶管道深度越浅,反演异常体的形态、大小、埋深越接近真实异常;随岩溶管道深度的增加,岩溶管道的矩形AMN装置和滚动MNB装置异常反演形态由椭圆向半椭圆、弓形变化,直至消失。
-
关键词:
- 高密度电阻率法微测系统 /
- 电极距 /
- 岩溶管道深度 /
- 物理模拟试验
Abstract: The high-density resistivity method is effective in searching for water in karst areas. As karst conduits in mountainous areas are at different depths, it is necessary to study the characteristics and rules of this method in such an environment. This work is based on the principle of the high-density electrical method. Using a high-density micro-electrical measurement system and the copper cylinder model, it simulates the response characteristics of the high-density resistivity method for different depths of karst conduits in a homogeneous medium. The results indicate that when the depth of karst conduits exceeds 15 times of the electrode spacing, the AMN and the MNB device cannot detect these conduits. When the depth of karst conduits is less than 10 to11 times of the electrode spacing, the combination of the AMN device and MNB device can precisely locate the horizontal position of the karst conduits. The transverse width of karst conduit inversion anomalies are always greater than the transverse width of the true anomalies. The buried depth of inversion anomalies are less than or equal to the true ones. And the shallower of the karst conduits, the closer of the inversion of anomaly body shape, size, and depth to the true anomalies. With the increasing of the depth of karst conduits, the forms of AMN device and MNB device inversion anomalies change from ellipse to semi-ellipse, then to bow till they disappear. -
[1] 焦彦杰,吴文贤,杨剑,等. 云南岩溶石山区物探找水方法与实例分析[J].中国地质,2011,38(3):770-778. [2] 张银松,张家刘,李斌,等. 综合物探电法在岩溶石山找水中的研究及其应用[J].工程勘察,2014(8):89-92. [3] 黄小军,王鹏,董亮,等. 高密度电法在地下暗河勘探中的应用[J].资源环境与工程,2012,26(2):66-68. [4] 李勋祥,张发明.高密度电法勘探在岩溶地区地下水勘查中的应用[J].贵州地质,2009,26(2):141-144. [5] 杨湘生. 高密度电法在湘西北岩溶石山区找水中的应用[J].湖南地质,2001,20(3):230-232. [6] 詹金锚. 高密度电法在岩溶地区找水定位中的应用[J].低碳世界,2014,11(6):160-161. [7] 秦军付. 多种电法在抗旱应急找水中的应用效果[J].勘察科学技术,2012(3):58-61. [8] McGrath R, Styles P, Thomas E, et al. Integrated highresolution geophysical investigations as potential tools for water resource investigations in karst terrain[J]. Environmental Geology, 2002, 42(5): 552-557. [9] 葛如冰. 高密度电阻率法在广东省工程勘察中的应用实例[J].物探与化探,1997,21(3):377-381. [10] 刘伟,甘伏平,赵伟,等. 高密度电法与微动技术组合在岩溶塌陷分区中的应用分析:以广西来宾吉利塌陷为例[J].中国岩溶,2014,33(1):118-122. [11] 陆才昆. 高密度电法在岜蒙水库暗河探测中的应用[J].广西水利水电,2011(3):55-57. [12] 欧阳伟,徐晓英. 高密度电法在灰岩找水中的应用[J].华北地震科学,2013,31(4):47-49. [13] Sonkamble S, Satishkumar V, Amarender B, et al. Combined ground-penetrating radar (GPR) and electrical resistivity applications exploring groundwater potential zones in granitic terrain[J]. Arabian Journal of Geosciences, 2014, 7(8): 3109-3117. [14] Tassy A, Maxwell M, Borgomano J, et al. Electrical resistivity tomography (ERT) of a coastal carbonate aquifer (Port-Miou, SE France)[J]. Environmental earth sciences, 2014, 71(2): 601-608. [15] 肖宏跃,武娇阳,雷宛,等.实验室高密度电法微测系统的模型研究[J].地球物理学进展, 2012, 26(4):1464-1472. [16] 傅良魁,李金铭.电法勘探教程[M].北京:地质出版社,1980:537-543. [17] 张新兵,于鹏,吴健生. 基于相似性原理的电法探测物理模拟实验教学[J].中国地质教育,2012(2):64-66. [18] 雷世红. 高密度电法室内模型与工程应用研究[D].南京:河海大学,2005:18-28. [19] 陈宁,雷宛,肖宏跃,等.边界系数法在高密度电阻率法正反演解释中的应用效果研究[J].成都理工大学学报(自然科学版),2011,38(3):284-290. [20] 钟韬,邓艳平.高密度电法在西部岩溶地区勘探中的应用[J].工程地球物理学报,2009,6 (S1):80-85. [21] 侯彦威. 高密度电法浅部不均匀体影响效应及校正方法研究[D].西安:煤科总院西安研究院,2008:13-25. [22] 张大海,王兴泰.二维视电阻率断面的快速最小二乘反演[J].物探化探计算技术,1999,21(1):2-8. [23] 黄真萍,李晨,李嫣,等. 高密度电阻率法数据的误差分析及应用[J]. 福建建设科技,2009(1):20-22.
点击查看大图
计量
- 文章访问数: 1784
- HTML浏览量: 396
- PDF下载量: 1877
- 被引次数: 0