Hydrochemical characteristics and material sources of the Riduo thermal spring in Tibet
-
摘要: 热泉水的水化学特征包含其形成过程中地质、构造、断裂、蚀变以及环境变化等多种信息,是研究地热流体形成和物质来源最基本和最重要的特征之一。西藏日多温泉发育于古新统典中组(E1d)和下白垩统林布宗组(K1l)地层。水化学特征显示:日多温泉地下热储温度为97.5 ℃~110.1 ℃之间,pH值为中性,水化学类型为SO4·HCO3-Na型,阳离子以Na+、Ca2+、K+为主,阴离子以Cl-、SO42-、HCO3-为主,并富含HBO2、H2SiO3、F、Li、Sr、Cs、As,矿化度介于1 162 mg/L~1 245 mg/L之间,符合理(医)疗热矿泉水水质标准。温泉水富含多种矿物组分的特征,与温泉水循环深度大、地下滞留时间较长(推测大于48 a)、地下热水与火山岩水-岩作用强烈有直接关系。综合研究热矿水的水化学特征,有助于更好地认识热泉水的形成过程,为热泉资源的开发利用和保护提供科学依据。Abstract: Hydrochemical characteristics of hot springs include geological, tectonic, fractured, alteration and hydro-environmental change information during the spring’s formation. So hot spring’s hydrochemistry analyze is the most important and basic method for hot spring formation and material source research. The Riduo spring is located in Riduo, Lhasa, Tibet. It occurs in Palaeocene Dianzhong Formation (E1d) and Lower Cretaceous Linbuzong Formation (K1l). The hydrochemical characteristics show the spring is neutral water with SO4·HCO3-Na. Its temperature is about 97.5-110.1 ℃. The positive ions are mainly Na+, Ca2+, and K+, while the negative ones are Cl-, SO42-, and HCO3-.The degree of mineralization is about 1 162-1 245 mg/L, with abundant of HBO2, H2SiO3, F, Li, Sr, Cs, and As, meeting the standard of physiotherapy (medical) hot spring quality. The characteristics are directly related to the deep water cycle, long-term underground residence (presumably greater than 48a) and intense water-rock interaction between the hot water and volcanic rock. Comprehensive study of hot spring’s hydrochemistry help to reveal the hot spring’s formation, and benefit the recourse rational use and protection.
-
[1] 杜毓超,吕勇,罗贵荣.滇西潞西盆地温泉水文地球化学特征及其成因[J].地质通报,2012,31(2-3): 406-412. [2] 于彦,刘杰,康楠,等.地热流体水化学特征与地质构造关系的Q-型聚类分析[J].水文地质工程地质,2013,40(3): 131-135. [3] 徐则民,雍自权,孙世雄.西藏朗久地热田水文地球化学特征[J].桂林工学院学报,1997,17(1):63-69. [4] 伍坤宇,沈立成,王香桂.西藏朗久地热田及其温泉水化学特征研究[J].中国岩溶,2011, 30(1): 1-8. [5] Hakim S, Sachio E. Temperature and chemical changes in the fluids of the Obama geothermal field (SW Japan) in response to field utilization [J]. Geothermics, 2010,39:228-241. [6] Suzan Pasvanog. Hydrogeochemical study of the Terme and Karakurt thermal and mineralized waters from Kirs, ehir Area, central Turkey [J].Environ Earth Sci,2012,66:169-182. [7] Mohammadi R, Bagheri R,Jahanshahi. Hydrogeochemistry and geothermometry of Changal thermal springs, Zagros region, Iran [J].Geothermics, 2010, 39: 242-249. [8] 魏斯禹, 腾吉文,杨秉平,等.西藏高温地热活动温泉分布与地球物理场特征[J].西北地震学报,1981,3(4):17-25. [9] 佟伟,廖志杰,刘时彬,等.西藏温泉志[M].北京:科学出版社,2000. [10] 多吉.典型高温地热系统-羊八井热田基本特征[J].中国工程科学,2003,5(1):42-47. [11] 赵平,Mack KENNEDY,多吉.西藏羊八井热田地热流体成因及演化的惰性气体制约[J].岩石学报,2001,17(3): 497-503. [12] GB/T 11615-2010,地热资源地质勘查规范[S]. [13] GB/T 13727-92,天然矿泉水地质勘探规范[S]. [14] Piper A M. A graphic procedure in the geochemical interpretation of water analysis [J].Transactions American Geophysical Union, 1994, 25(6): 914-928 [15] Yildiray Palabiyik,Umran Serpen. Geochemical assessment of Simav geothermal field, Turkey [J].Revista Mexicana Geologicas,2008,25(3):408-425. [16] Delgado-Outeiriňo, Araujo-Nespereira P , Cid-Fernández J A , et al. Behaviour of thermal waters through granite rocks based on residence time and inorganic pattern[J].Journal of Hydrology, 2009, 373: 329-336. [17] K R Bradbury. 以氚作指示剂测量威斯康星州中部地区地下水的年龄(钟文)[TJ].地质地球化学,1992,4:75-79. [18] 李学礼,孙占学,刘金辉.水文地球化学[M].北京:原子能出版社,2010:51-52,253-254. [19] Suzan Pasvanog. Hydrogeochemical study of the Terme and Karakurt thermal and mineralized waters from Kirs, ehir Area,central Turkey[J].Environ Earth Sci ,2012, 66:169-182 [20] Rose F E, Chaussidon M, FrancesLanord C H. Fractionation of boron isotopes during erosion processes: The Himalayan rivers [C]. Geochimica Cosmochimica Acta,2000,64:397-408. [21] Leeman W P, Sisson V B. Geochemistry of boron and its implications for crustal and mantle processes [J]. Reviews in Mineralogy, 1996, 33:645-707. [22] Vengosh A, Starinsky A, Kolodny Y, etal. Boron isotope geochemistry of thermal springs from the northern Rift Valley, Israel[J].Journal of Hydrology,1994,162:155-169. [23] 吕苑苑,赵平,许荣华,等.西藏羊八井地热田硼同位素地球化学特征初步研究[J].地质科学,2012,47(1): 251-264. [24] 宋军,胡进武.岩溶水锶元素水文地球化学特征[J].西部探矿工程,2005,12: 131-133. [25] 钱丽萍.五大连池药泉山矿水锶元素水文地球化学特征[J].资源开发与市场,2007,23(10): 865-867. [26] 赵平,多吉,谢鄂军,等.中国典型高温热田水的锶同位素研究[J].岩石学报,2003,19(3): 569-576. [27] Paropkpari A L. Geochemistry of sediments from the Mangalore–Cochin shelf and upper slope off southwest India. Geological and environmental factors controlling dispersal of elements [J]. Chemical Geology, 1990, 81: 99-119. [28] Giggench W F. Geothermal solute equilibria Derivation of Na-K-Mg-Ca geoindicators [J]. Geochimica Cosmochima Acta, 1988, 52: 2749-2765. [29] 胡弘,朱家玲,赵季初. 新西兰ROTORUA市KUIRAU热泉Na-K地球化学温标研究[J].黑龙江科技学院学报,2003,13(4): 45-49. [30] 王莹,周训,于湲,等.应用地热温标估算热储温度[J].现代地质,2007,21(4):605-612. [31] 柴蕊,王皓,刘洋.多矿物平衡法在地下热储温度估算中的应用[J].煤炭科学与技术,2010,38(4): 100-103. [32] Parkhurst D, Appelo C. User's Guide to PHREEQC(Version2)-A Computer Program for Speciation,Batch-reaction,one dimensional Transport and Inverse Geochemical Calculations[R].US Geol. Surv. Water Resour.Invest.Rep,1999:1-6. [33] 周训,金晓媚,梁四海,等.地下水科学专论[M].北京:地质出版社,2010: 72-75. [34] 郑西来,郭建青.二氧化硅地热温标及其相关问题的处理方法[J].地下水,1996,18(2): 85-88. [35] 徐世光,郭远生.地热学基础[M].北京:科学出版社,2009: 36-40.
点击查看大图
计量
- 文章访问数: 2294
- HTML浏览量: 352
- PDF下载量: 2072
- 被引次数: 0