Evaluation of capacity and suitability of CO2 geological storage in carbonate formations in basins of China mainland
-
摘要: 文章系统收集并分析了我国各盆地地层、大地构造、油田地质、水文地质数据,研究了我国各盆地碳酸盐岩地层空间分布和孔隙度特性,做出了《全国盆地碳酸盐岩分布面积分级图》、《全国盆地碳酸盐岩厚度分级图》、《全国盆地碳酸盐岩孔隙度分级图》、《全国盆地碳酸盐岩二氧化碳地质储存潜力分级图》。逐一对全国各沉积盆地内800~5 000 m深度区间各地质时代形成的碳酸盐岩储层的CO2储存能力进行了计算。通过层次分析法确定各评价指标权重,制做出全国盆地E级碳酸盐岩储层CO2地质储存适宜性评价结果表,绘制出《全国盆地碳酸盐岩储层CO2储存适应性评价图》。对全国盆地CO2储存进行了适宜性评价,剔除了不适宜CO2地质储存的沉积盆地,选出适宜的沉积盆地以供下一阶段继续研究。Abstract: Geological storage of carbon dioxide is one of the effective techniques to reduce CO2 emissions. Evaluation of capacity and suitability of such storage can provide a scientific foundation for policies of reducing greenhouse gas emissions. This work collects and analyzes the relevant data from the studies of petroleum geologyand engineering and hydrogeology. The porosity and thickness of carbonate formations in the basins of China mainland are investigated. A series of important geological maps related to CO2 storage in carbonate formations in these basins are prepared, including the “Classification map of areas of carbonate formations in the basins of China”, “Classification map of thicknesses of carbonate formations in the basins of China”, “Classification map of porosities of carbonate formations in the basins of China”, “Classification map of CO2 storage capacity of carbonate formations in the basins of China”, “Classification map of suitability of CO2 storage in carbonate formations in the basins of China”. After suitability evaluation and removal of those basins not suitable for CO2 storage, the basins with high suitability for CO2 storage are chosen for further investigation.
-
Key words:
- Carbonate rocks /
- CO2 geological storage /
- storage capacity /
- suitability assessment /
-
[1] 李小春,小出仁,大隅多加志. 二氧化碳地中隔离技术及其岩石力学问题[J]. 岩石力学与工程学报,2003,22(6):989-994. [2] Bachu S. Evaluation of the CO2sequestration capacity in Alberta’s oil and gas reservoirs at depletion and the effect of underlying aquifers[J].Journal of Canadian Petroleum Technology,2003, 42(9):51-61. [3] IPCC (Intergoverment Panel on Climate Change). IPCC special report on carbon dioxide capture and storage (Metz B, Davidson O, Coninck H C, et al. ) Cambridge University Press, Cambridge U.K., and New York, NY, U.S.A., 2005, 442. [4] Bachu S, Adams J . Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution[J]. Energy Conversion and Management,2003, 44 (20): 3151-3175. [5] Oldenburg C M, Lewicki J L, Dobeck L, et al. Modeling gas transport in the shallow subsurface during the ZERT CO2release test[J]. Transport In Porous Media, 2010, 82(1): 77-92. [6] 张炜.场地规模咸水层系统CO2地质封存评估方法的研究[D].武汉:中国地质大学(武汉),2011. [7] 李旭峰,常春,郭建强,等.塔里木盆地奥陶系礁灰岩CO2毛细残余封存能力实验研究[J].地学前缘,2011,18(6):190-194. [8] 常春,李旭峰,夏露,等.塔里木盆地奥陶系礁灰岩CO2地层构造封存能力参数实验研究[J].水文地质工程地质,2012,39(1):89-94. [9] 刘侃. 塔里木盆地CO2地质储存潜力评价[D].北京:中国地质大学(北京),2011. [10] 范明,蒋小琼,刘伟新,等.不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J].沉积学报,2007,25(6):825-830. [11] 刘侃,孙颖,于青春. 塔里木盆地巴楚地区奥陶系礁灰岩CO2地质储存的溶解溶蚀特征[J]. 地球科学与环境学报,2013,35(3):106-112. [12] Chang C , Li X F, Shen Z L, et al. Experimental drainage dynamics study of supercritical CO2 and water in low permeability and heterogeneous rocks[J]. Procedia Earth and Planetary Science, 2013, 7:127-130. [13] 王璐.地下咸水中CO2溶解能力研究[D]. 北京:中国地质大学(北京),2014. [14] 庞忠和,杨峰田,李义曼,等. 馆陶组咸水层与二氧化碳的相互作用及其地热利用与碳封存意义[A]//地热能开发利用与低碳经济研讨会——第十三届中国科协年会第十四分会场论文摘要集[C].中国科学技术协会、天津市人民政府、中国地质学会,2011:114-116. [15] 赵政璋,杜金虎,张国珍,等.碳酸盐岩储层地震勘探关键技术与应用[M].北京:石油工业出版社,2009. [16] 齐陆宁,崔建国. 埕岛地区油藏数值模拟与剩余油分布研究-以埕岛油田海二管理区馆上段油藏为例[M]. 北京:石油出版社,2009.
点击查看大图
计量
- 文章访问数: 1852
- HTML浏览量: 347
- PDF下载量: 1828
- 被引次数: 0