Progress of research on the response of information of karst cave drip water to ground conditions
-
摘要: 通过系统回顾国内外喀斯特洞穴滴水信息对地表环境响应的研究进展,结合全球气候变化、喀斯特环境演变与滴水理化指标的研究发展背景,把该领域的研究发展历程划分为萌芽期、缓慢发展期和高速增长期3个阶段。对滴水常规监测指标、稳定同位素及常/微量元素等指标的研究成果与认识进行了系统归纳,并对滴水响应外界大气、地表植被、洞穴上覆土壤以及洞顶基岩等4方面的研究进展进行总结。认为应当探究滴水的物质来源及其水文地球化学过程,加强对滴水信息环境指示的敏感性研究,深入认识滴水信息的环境响应机制,对洞穴系统综合环境要素开展监测等,同时指出运用滴水指标进行石漠化的相关研究比较薄弱,是未来研究的重点所在。Abstract: By reviewing domestic and foreign research progress on the response of information of karst cave drip water to ground conditions, coupled with the research background of global climate change, karst environmental evolution and drip water's physical and chemical indicators, this paper divides the history of this research into three stages: initial stage, slow development stage and rapid growth stage. This paper also systematically summarizes the research results and understandings of drip water's regular monitoring indicators, stable isotopes, major elements, trace elements, and so on. Meanwhile, it concluded the research progress of drip water's response to atmosphere, vegetation, soil and bedrock. It is suggested that the material resource and the hydro-geochemical process of drip water should be explored, the research for drip's sensitivity to indicate environment should be enhanced, the environment response mechanism of drip's information should be deeply probed and comprehensive environment elements of cave systems should be monitored. It is also pointed out that the research on the rocky desertification by drip water's indicators remains relatively weak now, which should be the focused topic in the future.
-
Key words:
- cave drip water /
- rocky desertification /
- environment /
- response /
- research progress
-
[1] 袁道先. 岩溶石漠化问题的全球视野和我国的治理对策与经验[J]. 草业科学, 2008, 25(9):19-25. [2] O’Neil J R, Clayton R N, Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates [J]. J.Chem.Phys, 1969, 51(12):5547-5558. [3] Handy C H. The isotopic geochemistry of speleothems-I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their application as palaeo-climatic indicators[J]. Geochim Cosmochim Acta, 1971,35(8):801-824. [4] Gascoyne M. Paleoclimate determination from cave calcite deposits[J]. Quaternary Science Reviews, 1992,11(6):609-632. [5] Li B, Yuan D, Qin J, et al. A high resolution record of climate change in a stalagmite from Panlong cave of Guilin since 36000 years B P [J]. In: Karst Waters Institute Special Publication 2. Climate Change: The Karst Record. Charles Town: Karst Waters Institute, Inc.1996,93-96. [6] Bar-Mattews M, Ayalon A,kaufman A. A Late Quaternary paleoclimate in the Eastern Mediterranean Region from stable isotope analysis of speleothes at Soreg Cave, srael[J]. Quaternary Research, 1997,47(2):155-168. [7] 谭明, 刘东生, 钟华, 等. 季风条件下全新世洞穴碳酸钙稳定同位素气候信息初步研究[J]. 科学通报, 1997,42(12):1302-1306. [8] Baker A, Smart P L, Edwards R L, et al.Annual growth banding in a cave stalagmite[J].Nature, 1993,364:518-520. [9] Coplen T B, Winograd I J, Landwehr J M, et al. 50000-year stable carbon isotopic record from Devils Hole, Nevada[J]. Science, 1994,263:361-365. [10] Holmgren K, Karlen W. Paleoclimate significance of the stable isotopic composition and petrology of a late Pleistocene stalagmite from Botswana[J]. Quaternary Research, 1995, 43(3): 320-325. [11] Szabo B J, Bush C A. Uranium-series dating of carbonate (tufa) deposits associated with Quaternary fluctuations of Pyramid lake, Nevada[J]. Quaternary Research, 1996,45(3):271-281. [12] Talma A S, Vogel J C. Late Quaternary paleo-temperature derived from a speleothem from Cango caves, Cape province, South Africa[J]. Quaternary Research, 1992,37:203-213. [13] Winograd I J, Coplen T B, Landwehr J M, et al. Continuous 50000-year climate record from vein calcite in Devils Hole[J]. Nevada.Science, 1992,258:255-260. [14] 谭明. 石笋微层气候学的几个重要问题. 第四纪研究, 2005, 25(2):164-169. [15] 秦小光, 刘东生, 谭明, 等. 北京石花洞石笋微层灰度变化特征及其古气候意义—1. 微层显微特征[J]. 中国科学D辑, 1998, 28(1): 91-96. [16] 覃嘉铭, 林玉石, 张美良, 等. 桂林全新世石笋高分辨率δ13C 记录及其古生态意义[J]. 第四纪研究, 2000, 20(4): 351-358. [17] 覃嘉铭, 袁道先, 林玉石, 等. 桂林44ka B.P.石笋同位素记录及其环境解译[J]. 地球学报, 2000,21(4):407-416. [18] 张美良, 林玉石, 覃嘉铭, 等. 黔南洞穴石笋古气候变化记录及终止点Ⅱ的确定[J]. 中国科学D辑:地球科学, 2002,32(11): 942-950. [19] 张美良, 朱晓燕, 林玉石, 等. 桂林洞穴滴水及现代碳酸钙(CaCO3)沉积的碳同位素记录及其环境意义[J]. 地球学报, 2009,30(5):634-642. [20] 张美良, 林玉石, 覃嘉铭. 洞穴石笋沉积纹层的形态组合及其滴水的水动力条件[J]. 西南师范大学学报(自然科学版), 2001,26(4):466-470. [21] 刘启明, 王世杰, 黎廷宇. 贵州凉风洞综合体系的现代生态环境记录[J]. 集美大学学报(自然科学版), 2007,12(3):261-263. [22] 张美良, 朱晓燕, 林玉石, 等. 洞穴滴(流)水的沉积及溶—侵蚀作用:以桂林盘龙洞为例[J]. 中国岩溶, 2007,26(4):326-333. [23] 张美良, 朱晓燕, 林玉石, 等. 桂林盘龙洞滴水的物理化学指标变化研究及其意义[J]. 地球与环境, 2009(1):1-10. [24] 刘子琦, 张乾柱, 熊康宁. 洞穴环境替代指标研究现状及其石漠化记录研究问题探究[J]. 水土保持研究, 2013(4):293-300. [25] 韩军, 杨霄. 桂林洞穴滴水对应CaCO3沉积物的稳定同位素特征与环境意义[J]. 海洋地质与第四纪地质, 2008(4):117-124. [26] 熊康宁, 黎平, 周忠发, 等. 喀斯特石漠化的遥感-GIS典型研究[M]. 北京:地质出版社, 2002:18. [27] 周运超, 王世杰, 谢兴能,等. 贵州4个洞穴滴水对大气降雨响应的动力学及其意义[J]. 科学通报, 2004,49(21):2220-2227. [28] 周运超, 王世杰. 洞穴滴水的水文地球化学过程:贵州犀牛洞的研究[J]. 地球与环境, 2005(2):23-30. [29] Baldini J U I, McDermott F, Fairchild I J. Spatial variability in cave drip water hydrochemistry: Implications for stalagmite paleoclimate records[J]. Chemical Geology, 2006,235(3):390-404. [30] 张乾柱, 熊康宁, 刘子琦, 等. 洞穴滴水水文化学特征及石漠化效应:以贵州石将军洞为例[J]. 热带地理, 2013(3):256-263. [31] Cobb K M, Adkins J F,Partin J W, et al. Regional-scale climate influences on temporal variations of rainwater and cave drip water oxygen isotopes in northern Borneo[J]. Earth and Planetary Science Letters, 2007,263(3): 207-220. [32] Mattey D, Lowry D, Duffet J, et al. A 53 year seasonally resolved oxygen and carbon isotope record from a modern Gibraltar speleothem: Reconstructed drip water and relationship to local precipitation[J]. Earth and Planetary Science Letters, 2008,269:80-95. [33] Lambert W J, Aharon P. Oxygen and hydrogen isotopes of rainfall and drip water at DeSoto Caverns (Alabama, USA): Key to understanding past variability of moisture transport from the Gulf of Mexico[J]. Geochimica et Cosmochimica Acta, 2010,74:846-861. [34] 李红春, 顾德隆, 赵树森, 等. 北京石花洞地区水系氢氧同位素及氚含量研究:石花洞研究系列之一[J]. 地震地质, 1996(4):325-328. [35] 覃嘉铭. 古气候变化的石笋同位素记录研究:以桂林盘龙洞为例[J]. 地球学报, 1997(3):32-37. [36] 李彬, 袁道先, 林玉石, 等. 桂林地区降水、洞穴滴水及现代洞穴碳酸盐氧碳同位素研究及其环境意义[J]. 中国科学(D辑:地球科学), 2000(1):81-87. [37] 张平中, 陈一萌, Johnson K P, 等. 甘肃武都万象洞滴水与现代石笋同位素的环境意义[J]. 科学通报, 2004,(15):1529-1531. [38] 刘子琦,李红春,熊康宁,等. 洞穴水系氢氧同位素监测对重建古气候样品选择的指示意义[J]. 中国岩溶,2008(2):139-144. [39] 韩军. 桂林洞穴滴水及其化学沉积物的地球化学特征研究摘要[D]. 中国地质科学院, 2006. [40] 李廷勇, 李红春, 向晓晶, 等. 碳同位素δ13C 在重庆岩溶地区植被-土壤-基岩-洞穴系统运移特征研究[J]. 中国科学:地球科学, 2012(4):526-535. [41] 吕现福, 刘子琦, 赵瑞一, 等. 地貌变化对洞穴滴水δ13C DIC值的影响研究[J]. 人民长江, 2013(9):32-36. [42] 刘启明, 王世杰. 洞穴体系对外界气候与生态环境的响应[J]. 生态学杂志, 2005(10):1172-1176. [43] 朱小龙, 王世杰, 罗维均. 贵州七星洞洞穴系统中锶同位素特征及其意义[J]. 科学通报, 2011(3):254-260. [44] 谭明, 潘根兴, 王先锋, 等. 石笋与环境:石笋纹层形成的环境机理初探[J]. 中国岩溶, 1999(3):3-11. [45] 王昕亚, 李廷勇, 胡蓉, 等. 重庆芙蓉洞洞穴滴水地球化学初探[J]. 西南大学学报(自然科学版), 2007(2):122-126. [46] 刘东生, 谭明, 秦小光, 等. 洞穴碳酸钙微层理在中国的首次发现及其对全球变化研究的意义[J]. 第四纪研究, 1997(1):41-51. [47] 唐灿, 周平根. 北京典型溶洞区土壤中的CO2及其对岩溶作用的驱动[J]. 中国岩溶, 1999,18(3): 213-217. [48] 潘根兴, 曹建华, 何师意, 等. 岩溶土壤系统对土壤空气CO2的吸收及其对陆地碳循环的意义: 以桂林丫吉村岩溶试验场的野外观测和模拟实验为例[J]. 地学前缘, 2000,7(4):580-587. [49] 何师意, 潘根兴, 曹建华, 等. 表层岩溶生态系统碳循环特征研究[J]. 第四纪研究, 2000,20(4):383-390. [50] 姜光辉, 郭芳, 曹建华, 等. 峰丛洼地表层岩溶动力系统季节变化规律[J]. 地球科学-中国地质大学学报, 2003,28(3):341-345. [51] 王新中, 班凤梅, 潘根兴. 洞穴滴水地球化学的空间和时间变化及其控制因素:以北京石花洞为例[J]. 第四纪研究,2005,25(2):258-264. [52] Chicano M L, Bouamama M, Vallejos A,et al. Factors which determine the hydrogeochemical behaviour of karstic springs. A case study from the Betic Cordilleras, Spain[J]. Applied Geochemistry, 2001,16 (9-10) :1179-1192. [53] 班凤梅, 潘根兴, 蔡炳贵, 等. 北京石花洞洞穴滴水中硫酸根浓度的时空变化及其意义[J]. 中国岩溶, 2009(3):243-248. [54] 周运超, 王世杰. 贵州凉风洞洞穴滴水水文水化学过程分析[J]. 第四纪研究, 2005,25(2):208-215. [55] 周运超, 王世杰. 贵州七星洞滴水的水文水花学特征及其意义[J]. 水文地质工程地质, 2006(1):52-57. [56] Ford D C, Williams P W. Karst Geomorphology and Hydrology[M]. London: Unwin Hyman Ltd, 1989:601-605. [57] Tan Ming, Liu Dongsheng, Qin Xiaoguang, et al. Preliminary study on the data from microbanding and stable isotopes of stalagmites of Beijing Shihua Cave[J]. Carsologica Sinica, 1997,16 (1):1-10 [58] Wang Xianfeng, Liu Tungsheng, Liang Handong, et al. Preliminary analyses by SIMS on trace components of stalagmite microlayers and their cli mate significance[J]. Quaternary Sciences, 1999(1):59-66. [59] Fairchild I J, Borsato A A, Tooth F,et al. Controls on trace element(Sr-Mg)compositions of carbonate cave waters: Implications for speleothem climatic records[J]. Chemical Geology, 2000, 166(3-4):255-269. [60] 王新中, 班凤梅, 潘根兴. 洞穴滴水地球化学的空间和时间变化及其控制因素:以北京石花洞为例[J]. 第四纪研究, 2005(2):258-264. [61] Wong C I, Banner J L, Musgrove M L. Seasonal drip water Mg/Ca and Sr/Ca variations driven by cave ventilation: Implications for and modeling of speleothem paleo-climate records[J]. Geochimica et Cosmochimica Acta, 2011,75(12):3514-3529. [62] 衣成城. 洞穴水离子浓度和元素比值变化特征及其环境意义[D]. 西南大学, 2010. [63] 向晓晶, 王建力, 李俊云. 重庆芙蓉洞岩溶系统中钡元素地球化学特征[J]. 湖北农业科学, 2011(17):3510-3513,3525. [64] 段凤君, 胡超涌, 阮骄杨, 等. 岩溶滴水中痕量磷的测定及其古环境意义[J]. 中国岩溶, 2012(2):115-120. [65] Baker A, Barnes W L, Smart P L. Speleothem luminescence in tensity and spectral characteristics-Signal calibration and a record of palaeo-vegetation change[J]. Chemical Geology, 1996,130:65-76. [66] Goede A, Vogel J C. Trace element variation and dating of a Late Pleistocene Tasmanian speleot hem[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1991,88(1):121-131. [67] Senesi N, Miano T M, Provenzano M R, et al. Characterization,differentiation,and classification of humic substances by fluorescence spectroscopy[J]. Soil Science, 1991,152(4):259-271. [68] Finch A A, Shaw P A, Weedon G P, et al. Trace element variation in Speleothem aragonite: Potential for palaeoenvironment alreconstruction [J]. Earth and Planetary Science Letters, 2001,186(2):255-267. [69] Baker A, Caseldine C J, Gilmour M A, et al. Stalagmite luminescence and peathumificatin records of palaeo moisture for the last 2500 years[J]. Earth and Planetary Science Letters, 1999,165(1):157-162. [70] 杨涛, 王世杰, 罗维均, 等. 现代环境监测研究中的一种新示踪指示剂(SO4)[J]. 地球与环境, 2012(1):1-8. [71] 班凤梅, 潘根兴, 王新中. 北京石花洞石笋微层层面有机物质的形成时间及机理初探[J]. 第四纪研究, 2005(2):265-268. [72] 黄咸雨, 蒲阳, 崔景伟, 等. 湖北清江和尚洞洞穴滴水脂肪酸分布特征及其古生态意义[J]. 第四纪研究, 2007(3):401-407. [73] 周运超, 王世杰. 贵州将军洞上覆土层对滴水水化学特征的影响[J]. 环境科学, 2006(10):1986-1991. [74] 黎廷宇. 岩溶洞穴系统稳定碳同位素演化的地球化学过程及其环境意义[D].中国科学院研究生院(地球化学研究所), 2004. [75] 赵瑞一. 不同程度石漠化下洞穴滴水δ13C-DIC变化特征及影响因素[D]. 西南大学, 2013. [76] 向晓晶, 李廷勇, 王建力, 等. 重庆芙蓉洞上覆基岩、土壤元素分布特征及其对洞穴滴水水化学影响[J]. 中国岩溶, 2011(2):193-199. [77] 王世杰, 罗维均, 刘秀明, 等. 贵州七星洞系统中水文地球化学特征对滴水δ13C -DIC的影响及其意义[J]. 地学前缘, 2009(6):66-76. [78] 王明达, 胡超涌, 周炼, 等. 土壤和围岩地球化学组成及气候对洞穴滴水水化学的影响:以湖北清江和尚洞为例[J]. 地质科技情报, 2010(3):97-103. [79] 李彬, 袁道先, 林玉石, 等. 桂林地区4万年来石笋高分辨率古生态变化记录[J]. 第四纪研究, 2000, 20(4):395. [80] Baker A, Ito E, Smart P L, et al. Elevated and variable values of 13C in speleothems in a British cave system[J]. Chemical Geology, 1997,136(3): 263-270. [81] Serefiddin F, Schwarcz H P, Ford D C, et al. Late Pleistocene paleoclimate in the Black Hills of South Dakota from isotope records in speleothems[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004,203(1):1-17 [82] 周超. 旅游洞穴系统中二氧化碳浓度变化及运移机制研究[D]. 西南大学, 2011. [83] 郭允. 早全新世辽宁暖和洞石笋纹层与气候事件研究[D]. 南京师范大学, 2011. [84] 李珊英. 洞穴石笋ICP-MS微量元素分析技术与豫西MIS8/9时段古气候变化研究[D]. 西南大学, 2012. [85] 张伟. 相同气候条件下不同洞穴沉积差异机理研究[D]. 南京师范大学, 2012. [86] 刘子琦. 利用洞穴体系地球化学指标研究贵州中西部近现代石漠化成因及趋势[D]. 西南大学, 2008.
点击查看大图
计量
- 文章访问数: 1913
- HTML浏览量: 302
- PDF下载量: 1359
- 被引次数: 0