Characteristics of δ13C in typical aquatic plants and carbon sequestration by plant photosynthesis in the Banzhai catchment,Maolan of Guizhou Province
-
摘要: 为研究水生植物光合作用对岩溶碳汇的贡献,选取板寨河水域为研究区,分冬季和夏季测定典型水生植物的生物量以及各采样点水生植物碳同位素组成(δ13C 值),并利用水生植物稳定碳同位素与碳酸酐酶间的关系建立的二端元模型,估算板寨河水生植物光合作用的固碳量。结果发现夏季生物量小于冬季生物量,水生植物的δ13C 值变化在-35.45‰~-24.62‰之间,其中挺水植物的δ13C 值最大,平均为-27.89‰,其次为沉水植物,平均为-29.96‰。浮水植物的δ13C 值最低,平均为-32‰,受流速、CO2浓度、光合途径等影响引起同种水生植物间同位素差异。水域水生植物固定下的HCO3-碳量为19.52 tc/(a.km2),其利用HCO3-作为无机碳源进行光合作用的比例平均为47.84%,显示出巨大的固碳潜力,是全球岩溶碳汇的一个重要组成部分。Abstract: Aquatic plants play a key role in study of the carbon cycle by using inorganic carbon as a source for photosynthesis. The object of this work is to figure out the contribution of aquatic vegetations to carbon sequestration with the Banzhai catchment in Guizhou as study area. The biomass of typical aquatic plants both in summer and winter was measured. Meanwhile, the δ13C of 4 kinds of aquatic plants, which grew at sampling sites, were tested. The results show that the biomass in summer is less than that in winter. Besides, the obtained values of δ13C for emergent aquatic plants range from -33.59 ‰ to -27.05 ‰, with an average of -30.32 ‰, for floating plants from -35.45 ‰ to -24.62 ‰, with an average of -29.96 ‰, respectively, and for submerged plants it was measured a value of -27.89 ‰. The mean δ13C values of various plants in descending order are emergent plants, floating plants, and submerged plants. Additional to this results the double-meta model was used, by this model the percentage of HCO3- uptake from water by aquatic photosynthesis can be estimated. The calculated HCO3- carbon consumption by photosynthesis was 19.52 tC/(a?km2), HCO3- used by aquatic plants for photosythesis accounted for almost 47.84 % of the total uesd inorganic carbon in Banzhai river, and this part of HCO3- was converted into organic carbon and fixed in aquatic plants. The results indicate that the contribution of aquatic plants to carbon sequestration, especially to the net carbon sink estimation in karst regions cannot be neglected.
-
Key words:
- aquatic plants /
- carbon sequestration /
- δ13C value /
- dissolved inorganic carbon /
- carbon sink
-
[1] Tans D P. NOAA/ESRL (www. esrl. noaa. gov/gmd/ccgg/trends/) and Dr. Ralph Keeling[OL]. Scripps Institution of Oceanography (scrippsco2. ucsd. edu/), 2011. [2] 袁道先. 地质作用与碳循环研究的回顾和展望[J]. 科学通报, 2011, 56(26):2157. [3] Berner R A, Lasaga A C, Garrels R M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years[J]. American Journal of Science, 1983, 283(7): 641-683. [4] 胡清菁,王培,华磊,等.Cd2+胁迫下小球藻(Chlorella vulgaris)对岩溶水HCO3-、Ca2+利用研究–以桂林寨底地下河为例[J]. 中国岩溶, 2014, 33(2): 123-128. [5] 张强. 岩溶地质碳汇的稳定性:以贵州草海地质碳汇为例[J]. 地球学报, 2012, 33(6): 947-952. [6] Zhang Cheng, Wang Jinliang, Pu Junbing, et al. Bicaebonate daily variations in a karst river:the carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica(English Edition), 2012, 86(4): 973-979. [7] 章程. 岩溶作用时间尺度与碳汇稳定性[J]. 中国岩溶, 2011, 30(4): 368-371. [8] De Montety V, Martin J B, Cohen M J ,et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011, 283(1-2): 31-43. [9] 王培, 曹建华, 李亮, 等. 不同来源小球藻对岩溶水Ca2+、HCO3-利用的初步研究[J].水生生物学报, 2013, 34(4): 626-631. [10] 刘再华, Dreybrodt W, 王海静. 一种由全球水循环产生的可能重要的CO2汇[J]. 科学通报, 2007, 52(20): 2418-2422. [11] Kahara S N, Vermaat J E. The effect of alkalinity on photosynthesis-light curves and inorganic carbon extraction capacity of fresh-water macrophytes[J]. Aquatic Botany, 2003, 75: 217-227. [12] Invers O, Zimmerman R C, Alberte R S ,et al. Inorganic carbon sources for seagrass photosynthesis:An experimental evaluation of bicarbonate use in species inhabiting temperate waters[J]. Experimental Marine Biology and Ecology , 2001, 265: 203-217. [13] Maier-Reimer E. The biological pump in the greenhouse[J].Global Planet Change, 1993, 8: 13-15. [14] 陈波, 杨睿, 刘再华, 等. 水生光合生物对茂兰拉桥泉及其下游水化学和δ13C-DIC昼夜变化的影响[J]. 地球化学, 2014, 43(4): 375-385. [15] 刘彦, 张金流, 何媛媛, 等. 单生卵囊藻对DIC的利用及其对CaCO3沉积影响的研究[J]. 地球化学, 2010, 39(2): 191-196. [16] Madsen T V. Growth and photosynthetic acclimation by ranu-nculus aqutuatilis L . in response to inorgnic carbon availability[J]. New Phytology, 1983, 125(4): 707-715. [17] 高丽楠. 水生植物光合作用影响因子研究进展[J]. 成都大学学报(自然科学版), 2013, 32(1): 1-8. [18] Prins H B A, Elzenga J T M. Bicarbonate utilization:function and mechanism[J]. Aquatic Botany, 1989, 34(1-3): 59-83. [19] Graham D et al.Annals of the New York Academy of Sciences[J].1984,429:222. [20] 张陶, 蒲俊兵, 袁道先, 等. 亚热带典型岩溶区地表溪流水文地球化学昼夜变化及其影响因素研究[J]. 环境科学, 2014, 35(8): 102-109. [21] 章程, 汪进良, 谢运球, 等. 桂林会仙岩溶湿地水化学昼夜动态变化及其影响因素[J]. 地质论评, 2013, 59(6): 1235-1241. [22] 吕保樱, 刘再华, 廖长君, 等. 水生植物对岩溶水化学日变化的影响-以桂林岩溶水文地质试验场为例[J]. 中国岩溶, 2006, 25(4): 335-340. [23] 李强 ,靳振江, 孙海龙. 现代藻类碳酸钙沉积试验及其同位素不平衡现象[J]. 中国岩溶, 2005, 24(4): 261-264. [24] 吴沿友, 邢德科, 刘莹. 植物利用碳酸氢根离子的特征分析[J]. 地球与环境, 2011, 39(2): 273-277. [25] 周政贤. 茂兰喀斯特森林科学考察集[M]. 贵阳:贵州人民出版社, 1987. [26] 张志卫, 闫志为, 曾成, 等. 茂兰自然保护区板寨地下河系统的水文地质特征[J]. 地下水, 2009, 31(2): 11-13, 32. [27] 康志强, 袁道先, 常勇, 等. 岩溶碳汇的主控因子-水循环[J]. 吉林大学学报(地球科学版), 2011, 41(3): 1542-1547. [28] 吴沿友. 植物碳酸酐酶对稳定碳同位素分馏作用的影响[J]. 矿物岩石地球化学通报, 2008, 27(2): 175-179. [29] 苏睿丽, 李伟. 沉水植物光合作用的特点与研究进展[J]. 植物学通报, 2005, 22(增刊): 128-138. [30] 任秋芳, 阿依巧丽, 朱智, 等. 三峡水域季节及养分对铜绿微囊藻生长的影响-模拟乌江回水区水环境的研究[J]. 重庆师范大学学报(自然科学版), 2010, 27(1): 42-46. [31] 石瑛. 娘子关泉域大型藻类植物区系组成和分布特点的研究[D]. 山西大学, 2004, 24-33. [32] 沈英嘉, 陈德辉. 不同光照周期对铜绿微囊藻和绿色微囊藻生长的影响[J]. 湖泊科学, 2004, 16(3): 285-288. [33] Bowes G, Salvucci M E. Plasticity in the photosynthetic carbon metabolism of submersed aquatic macrophytes[J]. Aquatic Botany, 1989, 349(1-3): 233-266. [34] 李强. 环境因子对沉水植物生长发育的影响机制[D]. 南京师范大学. 2007. [35] Bulthuis D A. Effects of temperature on the photosynthesis-irradiance curve of the Australian seagrass,heterozostera tasmanica[J]. Marine Biology Letters, 1983, 4(1): 47-57. [36] 谢贻发. 沉水植物与富营养湖泊水体、沉积物营养盐的相互作用研究[D]. 广东:暨南大学博士学位论文, 2008. [37] 罗固源, 康康, 朱亮. 水体中 TN /TP与藻类产生周期及产生量的关系[J]. 重庆大学学报(自然科学版), 2007, 30(1): 142-146. [38] Raven J A. Exogenous inorganic carbon sources in plant photosynthesis[J]. Biological Reviews, 1970, 45(2): 167-220. [39] Keely J E, Sandquist D R. Carbon: frest water plants[J]. Plant Cell Environment, 1992, 15: 1021-1035. [40] 章程, 谢运球, 宁良丹, 等. 桂林会仙岩溶湿地典型水生植物δ13C 特征与固碳量估算[J]. 中国岩溶, 2013, 32(3): 247-252. [41] 黄亮, 吴莹, 张经, 等. 长江中游若干湖泊水生植物体内C、N、P及δ13C 分布[J]. 地球学报, 2003, 24(6): 515-518. [42] O'leary M H , Carbon isotopes in photosynthesis[J]. Bioscience, 1988, 38(5): 328-336. [43] 冯虎元, 安黎哲, 王勋陵. 环境条件对植物稳定同位素组成的影响[J]. 植物学通报, 2000, 17(4): 312-318. [44] 王国安, 韩家懋. C3植物碳同位素在旱季和雨季中的变化[J]. 海洋地质与第四纪地质, 2001, 21(4): 43-47. [45] O'leary M H , Carbon isotope fractionation in plants [J]. Phytochemistry, 1981, 20(4): 553-567. [46] 韦莉莉, 严重玲, 叶彬彬, 等.C3植物稳定碳同位素组成与盐分的关系[J]. 生态学报, 2008, 28(3): 1270-1278. [47] K?rner C H , Farquhar G D, Wong S C , Carbon isotope discrimination by plants follows latitudinal and altitudinal trends[J]. Oecologia,1991,88:30-40. [48] 殷树鹏, 张成君, 郭方琴, 等. 植物碳同位素组成的环境影响因素及在水分利用效率中的应用[J]. 同位素, 2008, 21(1): 46-53. [49] 陈世苹, 白永飞, 韩兴国. 稳定性碳同位素技术在生态学研究中的应用[J]. 植物生态学报, 2002, 26(5): 549-560. [50] 尹观, 倪师军. 同位素地球化学[M]. 北京:地质出版社, 2009,354-357. [51] Mook W G,Bommerson J C ,Staverman W H. Carbon isotope fraction between dissolved bicarbonate and gaseous carbon dioxide[J]. Earth and Planetary Science Letters, 1974, 22: 169-176. [52] 林清, 王绍令. 沉水植物稳定碳同位素组成及影响因素分析[J]. 2001, 生态学报, 21(5): 806-809. [53] Niu S L, Jiang G M, Li Y K. Environmental regulations of C3 and C4 plants[J]. Acta Ecologica Sinica, 2004, 24(2): 308-314. [54] 牛书丽, 蒋高明, 李永庚. C3与C4植物的环境调控[J]. 生态学报, 2004, 24(2): 308-314.
点击查看大图
计量
- 文章访问数: 3099
- HTML浏览量: 365
- PDF下载量: 1760
- 被引次数: 0