• 全国中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库收录期刊
  • 世界期刊影响力指数(WJCI)报告来源期刊
  • Scopus, CA, DOAJ, EBSCO, JST等数据库收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

岩溶区河流水化学昼夜变化与生物地球化学过程

章程

章程. 岩溶区河流水化学昼夜变化与生物地球化学过程[J]. 中国岩溶, 2015, 34(1): 1-8. doi: 10.11932/karst20150101
引用本文: 章程. 岩溶区河流水化学昼夜变化与生物地球化学过程[J]. 中国岩溶, 2015, 34(1): 1-8. doi: 10.11932/karst20150101
ZHANG Cheng. Diel aqueous chemistry and biogeochemical processes in streams of karst areas[J]. CARSOLOGICA SINICA, 2015, 34(1): 1-8. doi: 10.11932/karst20150101
Citation: ZHANG Cheng. Diel aqueous chemistry and biogeochemical processes in streams of karst areas[J]. CARSOLOGICA SINICA, 2015, 34(1): 1-8. doi: 10.11932/karst20150101

岩溶区河流水化学昼夜变化与生物地球化学过程

doi: 10.11932/karst20150101
基金项目: 中国地质调查局地质调查项目(12120113014200, 12120114006301)、广西科学技术计划项目(桂科能1298018-6)、国土资源部公益性科研行业专项基金(201111022, 201311148)、国家自然科学基金(41202185)和IGCP 598项目

Diel aqueous chemistry and biogeochemical processes in streams of karst areas

  • 摘要: 河流水化学昼夜动态变化的研究有助于揭示水体中相对快速的生物地球化学过程(河流内过程),同时也有助于判别上游补给区流域过程。已有的研究表明生物过程(光合作用与呼吸作用)、地球化学过程(碳酸盐平衡、碳酸钙沉积)是控制河流pH、SpC、Ca2+和HCO3-含量昼夜变化的主要因素。不同级别、类型及河床微环境均会对水化学昼夜变化产生影响,与气温密切相关的光合作用是产生河水pH值和DO昼夜变化的主控因素。在偏碱性与富含钙离子的岩溶河流,有机体的钙化作用与酸分泌可能对光合作用具有重要作用,从而导致水体中Ca2+和HCO3-出现白天下降-夜间回升的昼夜动态变化,下降幅度达20%~30%。水生植物通过光合作用产生DIC(主要为HCO3-)的原位沉降,是真正意义上的净碳汇。昼夜生物地球化学循环及效应研究有助于全面认识岩溶区碳循环特征及岩溶含水层源汇关系,尤其是岩溶碳汇稳定性与净碳汇估算;同时对长时间尺度河流监测计划的制定具有重要意义。

     

  • [1] Lin H.Earth’s Critical Zone and hydropedology: concepts, characteristics, and advances [J], Hydrology and Earth System Sciences, 2010, 14:25-45.
    [2] 杨建锋, 张翠光. 地球关键带: 地质环境研究的新框架[J]. 水文地质工程地质[J], 2014, 41(3):98-104.
    [3] 章程.岩溶作用时间尺度和碳汇稳定性[J].中国岩溶, 2011, 30(4): 368-371.
    [4] White W B. Carbon fluxes in Karst aquifers:Sources, sinks, and the effect of storm flow[J]. Acta Carsologica, 2013, 42(2-3):177-186.
    [5] 焦念志, 汤凯, 张瑶, 等. 海洋微型生物储碳过程与机制概论[J]. 微生物学通报, 2013, 40(1): 71-86.
    [6] 何一平, 曾永辉, 袁博, 等. 基于pufM基因的乌梁素海富营养化湖区好氧不产氧光合细菌系统发育多样性分析[J]. 微生物学通报, 2010, 37(8): 1138-1145.
    [7] 陈晓洁, 曾永辉, 简纪常, 等. 玛珥湖好氧不产氧光合细菌pufM基因DNA和mRNA的定量及多样性分析[J]. 微生物学通报, 2012, 39(11): 1560-1572.
    [8] Nimick D A, Gammons C H, Parker S R, Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review[J]. Chemical Geology, 2011, 283(1):3-17.
    [9] Parker S R, Poulson S R, Smith M G, et al. Temporal variability in the concentration and stable carbon isotope composition of dissolved inorganic and organic carbon in two Montana, USA rivers[J]. Aquatic Geochemistry, 2010,16(1):61-84.
    [10] Hayashi M, Vogt T, Mahler L, et al. Diurnal fluctuations of electrical conductivity in a pre-alpine river: Effects of photosynthesis and groundwater exchange[J]. Journal of Hydrology, 2012, 450-451: 93-104.
    [11] 蒋忠诚, 袁道先, 曹建华, 等.中国岩溶碳汇潜力研究[J]. 地球学报, 2012, 33(2): 129-134.
    [12] Montety V de, Martin J B, Cohen M J, et al. Influence of diel biogeochemical cycles on carbonate equilibrium in a karst river[J]. Chemical Geology, 2011,283(1):31-43.
    [13] Zhang Cheng, Wang Jinliang, Pu Junbing, et al. Bicarbonate daily variations in a karst river: the carbon sink effect of subaquatic vegetation photosynthesis[J]. Acta Geologica Sinica(English Edition), 2012, 86(4): 973-979.
    [14] Nimick D A, Cleasby T E, Mc Cleskey R B. Seasonality of diel cycles of dissolved trace-metal concentrations in a Rocky Mountain stream[J]. Environmental Geology, 2005, 47(5):603-614.
    [15] Drysdale R, Lucas S, Carthew K. The influence of diurnal temperatures on the hydrochemistry of a tufa-depositing stream[J]. Hydrological Processes, 2003,17(17):3421-3441.
    [16] Liu Z, Liu X, Liao C. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a karst spring-fed pool: insights from high time-resolution monitoring of physico-chemistry of water[J]. Environmental Geology, 2008, 55(6):1159-1168.
    [17] Calles U M. Diurnal variations in electrical conductivity of water in a small stream[J]. Nordic Hydrology, 1982, 13(3):157-164.
    [18] Ort C, Siegrist H. Assessing wastewater dilution in small rivers with high resolution conductivity probes[J]. Water Science and Technology, 2009,59(8):1593-1601.
    [19] Iwanyshyn M, Ryan M C, Chu A. Cost-effective approach for continuous major ion and nutrient concentration estimation in a river[J].Journal of Environmental Engineering,2009,135(4):218-224.
    [20] Nagorski S A, Moore J J, Mclinnon T E, et al. Scale-dependent temporal variations in stream water geochemistry[J]. Environmental Science and Technology, 2003, 37(5):859-864.
    [21] Waldron S, Scott E M, Soulsby C. Stable isotope analysis reveals lower-order river dissolved inorganic carbon pools are highly dynamic[J]. Environmental Science and Technology, 2007,41(17):6156-6162.
    [22] Poulson S R, Sullivan A B. Assessment of diel chemical and isotopic techniques to investigate biogeochemical cycles in the upper Klamath River, Oregon, USA[J]. Chemical Geology, 2010,269(1):3-11.
    [23] Fuller C C, Davis J A. Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters[J]. Nature, 1989, 340(6228):52-54.
    [24] Nimick D A, Moore J N, Dalby C E, et al. The fate of geothermal arsenic in the Madison and Missouri Rivers, Montana and Wyoming[J]. Water Resource Research, 1998, 34(11):3051-3067.
    [25] Parker S R, Gammons C H, Poulson S R, et al. Diel variations in stream chemistry and isotopic composition of dissolved inorganic carbon, upper Clark Fork River, Montana, USA[J]. Applied Geochemistry, 2007,22(7):1329-1343.
    [26] Tobias C, Bhlke J K. Biological and geochemical controls on diel dissolved inorganic carbon cycling in a low-order agricultural stream: Implications for reach scales and beyond[J]. Chemical Geology, 2011,283(1):18-30.
    [27] Amiotte-Suchet P, Aubert D, Probst J L, et al.δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges mountains, France)[J]. Chemical Geology, 1999,159(1):129-145.
    [28] Telmer K, Veizer J. Carbon fluxes, pCO2 and substrate weathering in a large northern river basin, Canada: carbon isotope perspectives[J]. Chemical Geology, 1999, 159(1):61-86.
    [29] Hélie J-F, Hillaire-Marcel C, Rondeau B. Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River—isotopic and chemical constraint[J]. Chemical Geology, 2002,186(1):117-138.
    [30] Dandurand J L, Gout R, Hoefs J, et al. Kinetically controlled variations of major components and carbon and oxygen isotopes in a calcite-precipitating spring[J]. Chemical Geology, 1982, 36(3):299-315.
    [31] Spiro B, Pentecost A. One day in the life of a stream-a diurnal inorganic carbon mass balance for a travertine-depositing stream (waterfall beck,Yorkshire)[J]. Geomicrobiology Journal, 1991,9(1):1-11.
    [32] Guasch H, Armengol J, Martí E, et al. Diurnal variation in dissolved oxygen and carbon dioxide in two low-order streams[J]. Water Research, 1998,32(4):1067-1074.
    [33] Reichert P. River water quality model no. 1 (RWQM1): Case study II. Oxygen and nitrogen conversion processes in the river Glatt (Switzerland) [J]. Water Science and Technology, 2001,43(5):51-60.
    [34] Lorah M M, Herman J S. The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions[J]. Water Resources Research, 1988, 24(9):1541-1552.
    [35] Finlay J C. Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed[J]. Biogeochemistry, 2003, 62(3):231-252.
    [36] Prins H B A, Elzenga J T M. Bicarbonate utilization: function and mechanism[J]. Aquatic Botany, 1989, 34(1):59- 83.
    [37] Madsen T V. Growth and photosynthetic acclimation by Ranunculus aquatilis L . in response to inorganic carbon availability[J]. New Phytologist, 1983, 125(4): 707-715.
    [38] Neal C, Watts C, Williams R J, et al. Diurnal and longer term patterns in carbon dioxide and calcite saturation for the River Kennet, south-eastern England[J].Science of The Total Environment, 2002, 282-283;205-231.
    [39] Cicerone D S, Stewart A J, Roh Y. Diel cycles in calcite production and dissolution in a eutrophic basin[J]. Environmental Toxicology and Chemistry, 1999, 18(10):2169-2177.
    [40] Parkhurst D L, Appelo C A J. User's guide to PHREEQC (Version 2)—A computer program for speciation,batch-reaction, one-dimensional transport, and inverse geochemical calculations[J].United State Geological Survey — Water Resources Investigations Report 99-4259,1999:312.
    [41] Mook W G, de Vries J J. Environmental isotopes in the hydrological cycle:principles and applications[M]. Technical Documents in Hydrology No.39. UNESCO/IAEA, Paris,2000.
    [42] 黄奇波, 覃小群, 唐萍萍, 等.桂林地区不同类型岩溶地下水中δ13C -DIC、δ18O 的特征及意义[J]. 地球化学,2013, 42(1): 64-72.
    [43] Vogel J C. Variability of carbon isotope fractionation during photosynthesis[C]//stable isotopes and plant carbon-water relations.Academic Press Inc, 1993:29-38.
    [44] Clark I D, Fritz P. Environmental Isotopes in Hydrogeology[M]. NewYork:Lewis Publishers,1997.
    [45] Lynch J K, Beatty C M, Seidel M P, et al. Controls of riverine CO2 over an annual cycle determined using direct, high temporal resolution pCO2 measurements. Journal of Geophysical Research:Biogeoscionces(2005-2012),2010, 115 (G3).DOI: 10.1029/2009JG001132.
    [46] McConnaughey T. Acid secretion, calcification, and photosynthetic carbon concentrating mechanisms[J]. Canadian Journal of Botany, 1998, 76(6):1119-1126.
    [47] Stumm W, Morgan J L. Aquatic Chemistry[M]. New York:John Wiley & Sons, 1996.
    [48] Raymond P A, Cole J J. Increase in the export of alkalinity from North America's largest river[J]. Science, 2003, 301(5629):88-91.
    [49] Oh N H, Raymond P A. Contribution of agricultural liming to riverine bicarbonate export and CO2 sequestration in the Ohio River basin[J]. Global Biogeochemical Cycles,2006,20(3).DOI: 10.1029/2005GB002565.
    [50] Raymond P A, Oh N H, Turner R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River[J]. Nature, 2008, 451(7177):449-452.
    [51] Wollast R,Mackenzie F T,Chou L. Interactions of C, N, P and S, Biogeochemical Cycles and Global Change[M]//NATO ASI Series I:Groble Envioronmetal Charge.Springer Verlag, Berlin, 1993:163-193.
    [52] Yang C, Telmer K, Veizer J. Chemical dynamics of the "St.Lawrence" riverine system: δDH2O, δ18O-H2O, δ13C-DIC, δ34S sulfate, and dissolved 87Sr/86Sr[J]. Geochimica Cosmochimica Acta, 1996, 60(5):851-866.
    [53] Kurz M J, de Montety V, Martin J B, et al. Controls on diel metal cycles in a biologically productive carbonate-dominated river[J]. Chemical Geology,2013,358:61-74.
    [54] 章 程, 汪进良, 蒲俊兵.地下河出口河流水化学昼夜动态变化:生物地球化学过程的控制[J]. 地球学报, 2015,36(2):197-203.DOI: 10.3975/cagsb.2015.00.00
    [55] Gammons C H, Babcock J N, Parker S R, et al. Diel cycling and stable isotopes of dissolved oxygen, dissolved inorganic carbon, and nitrogenous species in a stream receiving treated municipal sewage[J]. Chemical Geology, 2011, 283(1): 44-55.
    [56] Uehlinger U. Annual cycle and inter-annual variability of gross primary production and ecosystem respiration in a floodprone river during a 15-year period[J]. Freshwater Biology, 2006, 51(5):938-950.
    [57] Jones J B, Stanley E H, Mulholland P J. Long-term decline in carbon dioxide supersaturation in rivers across the contiguous United States[J]. Geophysical Research Letters, 2003, 30(10):1-4.
    [58] Yates K K, Dufore C, Smiley N, et al. Diurnal variation of oxygen and carbonate system parameters in Tampa Bay and Florida Bay[J].Marine Chemistry, 2007, 104(1):110-124.
    [59] Aucour A, Sheppard S M F, Guyomar O, et al. Use of 13C to trace origin and cycling of inorganic carbon in the Rh ne river system[J]. Chemical Geology, 1999, 159(1):87-105.
  • 加载中
计量
  • 文章访问数:  2816
  • HTML浏览量:  337
  • PDF下载量:  1518
  • 被引次数: 0
出版历程
  • 发布日期:  2015-02-25

目录

    /

    返回文章
    返回