Estimating soil erosion and analyzing its spatio-temporal characteristics in Guijiang river basin, Guangxi
-
摘要: 桂江流域的水土流失现状研究对珠江三角洲的水生态安全有重要的现实意义。采用修正的通用土壤流失方程(RUSLE)估算了桂江流域的土壤侵蚀模数与年侵蚀总量,分析流域内土壤侵蚀的时空分布特征,探讨了影响该区域土壤侵蚀强度的自然与人文因素。结果表明,桂江流域51.8%的地表都在发生不同程度的土壤侵蚀。从全流域平均土壤侵蚀强度来看,属于中度侵蚀。从土壤侵蚀面积来看,约85%的地表处于微度、轻度与中度侵蚀。4-6月的全流域平均土壤侵蚀强度最大,侵蚀总量也是最大的。流域的土壤侵蚀主要发生在高程在30~600m的低山丘陵-高地地貌区内的林地与耕地中。流域内岩溶区的土壤侵蚀强度随着石漠化程度从无到中度逐渐增加,轻、中度石漠化区的土壤侵蚀强度达到强度侵蚀等级。Abstract: The Guijiang river basin is situated in China’s southwest karst area. It is well-known for the Lijiang river, which has the most scenic karst landforms in the upper reaches of the basin. The Guijiang river is a major tributary of Xijiang river in the Pearl river basin. Research on soil erosion in the Guijiang river basin, hence, has practical significance for conservation of the aquatic ecology and security of the Pearl River Delta. In addition, the soil erosion model developed for this study is fundamental to research on the carbon budget of this karst area. The Revised Universal Soil Loss Equation (RUSLE) was utilized to calculate the soil loss rate and soil loss amount in the Guijiang river basin, Guangxi. The spatial distribution of soil erosion was analyzed, and the natural and human factors associated with soil erosion discussed. It was shown that about 51.8% of the land area of the Guijiang river basin underwent soil loss to differing degrees. The Guijiang river basin had an average-annual soil loss of up to 2.95×106 tons and the average soil erosion rate was 153.5 t/km2, identified as medium erosion. 85% of the total area of the study basin had micro-slight and medium soil erosion. Strong or greater soil erosion was found in 15% of the study area, mainly in the north of the basin, the high-elevation south and northwest mountain areas of the Gongcheng river. The seasonal distribution of rainfall in the basin determined similar temporal distribution of soil erosion. Soil erosion intensity and total soil loss peaked in the second quarter, because the ratio of rainfall erosivity from April to June is highest in a whole year. This is followed by the third quarter, which accounted for one third of the total annual soil loss. Soil loss reached a maximum in the hilly and mountainous areas with elevations ranging from 30 m to 600 m. Soil loss in the karst areas was nearly all derived from areas of no or slight karst rocky desertification. The intensity of soil erosion was enhanced following increases in the degree of karst rocky desertification from no to medium, and the soil erosion in areas of slight or medium karst rocky desertification reach strong degree. Soil losses calculated by the RUSLE model developed for the Guijiang river basin were basically in accord with sediment discharge data from past literature, indicating that RUSLE can be properly used to estimate soil erosion intensity and soil loss in karst river basins.
-
[1] Flanagan D C,Gilley J E,Franti T G. Water Erosion Prediction Project (WEPP): Development history,model capabilities,and future enhancements[J]. Transactions of the ASAE,2007,50(5): 1603-1612. [2] Morgan R P C,Quinton J N,Smith R E,et al. The European Soil Erosion Model (EUROSEM): a dynamic approach for predicting sediment transport from fields and small catchments[J]. Earth Surface Processes and Landforms,1998,23(6): 527-544. [3] US Environmental Protection Agency. Better assessment science integrating point and non point sources-BASINS[M]. EPA's Office of Water; Washington DC ,2001. [4] DeRoo A P J,Offermans R J E. LISEM: a physically-based hydrological and soil erosion model for basin-scale water and sediment management[J]. Modelling and Management of Sustainable Basin-scale Water Resource Systems,1995,231: 399-407. [5] Licciardello F, Govers G, Cerdan O, et al. Evaluation of the PESERA model in two contrasting environments[J].Earth Surface Processes and Landforms, 2009,34(5): 629-640. [6] 龙明忠,吴克华,熊康宁. WEPP模型(坡面版)在贵州石漠化地区土壤侵蚀模拟的适用性评价[J]. 中国岩溶,2014,33(2): 201-206. [7] Feng T,Chen H S,Wang K L,et al. Modeling soil erosion using a spatially distributed model in a karst catchment of northwest Guangxi,China[J]. Earth Surface Processes and Landforms. 2014,39(15): 2121-2130. [8] Febles-Gonzalez J M,Vega-Carreno M B,Tolo-Becerra A,et al. Assessment of soil ersion in karst regions of Havana,Cuba[J]. Land Degradation and Development,2011,23(5): 465-474. [9] 余丹,孙丽娜,于俊峰,等. 基于SWAT的猫跳河流域径流及土壤侵蚀模拟研究[J]. 中国农学通报,2012,28(17): 256-261. [10] 王尧. 喀斯特地区土壤侵蚀模拟研究[D]. 北京大学,2011. [11] 倪九派,袁道先,谢德体,等. 基于GIS的岩溶槽谷区小流域土壤侵蚀量估算[J]. 应用基础与工程科学学报. 2010,18(2): 217-225. [12] 熊亚兰. 西南喀斯特地区土壤侵蚀规律及水土流失预测. 北京师范大学,2009. [13] Xu Y Q,Shao X M,Kong X B,et al. Adapting the RUSLE and GIS to model soil erosion risk in a mountains karst watershed,Guizhou Province,China[J]. Environmental Monitoring and Assessment,2007,141(1-3): 275-286. [14] 曾凌云. 基于RUSLE模型的喀斯特地区土壤侵蚀研究—以贵州红枫湖流域为例[D].北京大学,2008. [15] Kheir R B,Abdallah C,Khawlie M. Assessing soil erosion in Mediterranean karst landscapes of Lebanon using remote sensing and GIS[J]. Engineering Geology,2008,99(3/4): 239-254. [16] 蒋忠诚. 广西岩溶及其生态环境领域近十年来的主要研究进展[J]. 南方国土资源,2004,(11): 19-21. [17] 杨成英. 桂林毛村岩溶地下河流域区表层水土流失遥感动态监测研究[D]. 桂林工学院,2007. [18] 白晓永,王世杰. 岩溶区土壤允许流失量与土地石漠化的关系[J]. 自然资源学报,2011,26(8):1315-1322. [19] 张红波,何师意,于奭,等. 桂江流域河流水化学特征及影响因素[J]. 中国岩溶,2012,31(4): 395-401. [20] 周秀平,黄伟军,王文圣. 桂江流域径流变化特性分析[J]. 广西水利水电,2008,(1): 22-39. [21] Renard K,Foster G,Weesies G. RUSLE: a Guide to conservation planning with the revised universal soil loss equation[M]. USDA Agricultural Handbook,1997: 703. [22] 郭新波,王兆骞,张如良. 浙江红壤区降雨侵蚀力季节分布与日雨量模型研究[J]. 水土保持学报,2001,15(3): 35-37. [23] 宁丽丹,石辉. 利用日降雨量资料估算西南地区的降雨侵蚀力[J]. 水土保持研究,2003,10(4): 183-186. [24] Willian J R,Jones C A,Dyke P T. A modeling approach to determining the relationship between erosion and soil productivity[J]. Transactions of the ASAE,1984,27: 129-144. [25] Wischmeier W H,Smith D. Predicting rainfall erosion lossess-a guide to conservation planning. Washinton DC: USDA Agricultural Handbook No.537; 1978. [26] McCool D K,Brown L C,Foster G R. Revised slope steepness factor for the universal soil loss equation[J]. Transactions of the ASAE,1987,30(5): 1387-1396. [27] Liu B Y,Nearing M A,Risse L M. Slope gradient effects on soil loss for steep slopes [J]. Transactions of the ASAE,1994,37(6): 1835-1840. [28] 刘宝元,毕小刚,符素华. 北京土壤流失方程[M]. 北京: 科学出版社,2010. [29] 胡业翠,刘彦随,吴佩林,等. 广西喀斯特山区土地石漠化:态势、成因与治理[J]. 农业工程学报,2008,24(6): 95-101. [30] 杨奇勇,蒋忠诚,马祖陆. 基于地统计学和遥感的岩溶区石漠化空间变异特征[J]. 农业工程学报,2012,28(4): 243-247. [31] 曹建华,蒋忠诚,杨德生,等. 我国西南岩溶区土壤侵蚀强度分级标准研究[J]. 中国水土保持,2008,6(6): 1-7. [32] 王庆婵. 桂江流域桂林市境内泥沙演变与水土保持分析[J]. 广西水利水电,2013,(3): 56-59. [33] 刘新华,杨勤科,汤国安. 中国地形起伏度的提取及在水土流失定量评价中的应用[J]. 水土保持通报,2001,21(1): 57-62. [34] 规划编写组,张菁. 广西壮族自治区岩溶地区石漠化综合治理规划[J]. 草业科学,2008,25(9): 93-102. [35] 广西农业信息网. 广西土地资源概况[OL\]. 2008. http://www.gxny.gov.cn/web/2008-11/228935.htm. [36] 龙明忠,杨洁,吴克华. 喀斯特峡谷区不同等级石漠化土壤侵蚀对比研究—以贵州花江示范区为例[J]. 贵州师范大学学报(自然科学版),2006,24(1): 25-30.
点击查看大图
计量
- 文章访问数: 2190
- HTML浏览量: 302
- PDF下载量: 995
- 被引次数: 0