Aragonite stalagmite use in paleoclimate and environmental change research: Progress, disadvantages and further research directions
-
摘要: 在全球变暖、极端事件频发的背景下,利用地质载体重建过去2 000年来气候变化规律、研究极端事件发生机制是未来气候变化,特别是极端天气/气候事件预测的重要手段。文章综述了高U含量、能够高精度测定年龄的洞穴文石石笋在古气候环境重建的应用:用于研究气候变化与人类文明的关系、反演区域气候差异性、准确重建区域气候变化及极端事件的发生;并针对洞穴文石石笋古气候环境重建中存在的问题提出以下研究方向:综合87Sr/86Sr、δ26Mg、δ18O和δ13C等同位素技术追寻洞穴文石的物源、利用Mg/Ca、Sr/Ca和δ13C、△47综合分析洞穴文石形成的环境及水文过程,加强洞穴文石的结晶学、物理化学研究,查明其形成及转化为方解石的条件。Abstract: Due to global warming, extreme climate events have increased in frequency and intensity. Thus, it is important to use the geologic record to reconstruct climate change during the past 2 000 years, including the warm period (Medieval Warm Period), cold period (Little Ice Age) and the human-activity-influenced Current Warm Period, to better understand the mechanisms of climate change and extreme climate events. This paper focuses on aragonite stalagmites with high levels of uranium, allowing for high precision dating. The high precision dating enables study of the relationship between climate and cultural changes (such as the development and disintegration of the Mayan political systems), differences in regional climate (such as dry-wet conditions in the Asian monsoon area), and reconstruction of extreme climate events (such as the mechanism of drought events in the Asian monsoon area). When aragonite stalagmites are used in paleoclimate reconstruction, it is very important to know both the aragonite formation conditions and the aragonite-to-calcite transition conditions. To address these issues, the following techniques may be used, First, 87Sr/86Sr, δ26Mg, δ18O and δ13C should be integrated into analysis of the stalagmite provenance, to determine if the stalagmite Mg comes from bedrock dolomite or is due to the hydrologic process. Second, synthetically analyze the aragonite formation environment and the hydrologic process using Mg/Ca, Sr/Ca, δ13C and △47 to determine if changes in temperature or hydrologic process may have caused PCP (Prior Calcite Precipitation) or PAP (Prior Aragonite Precipitation). Third, use crystallography and physical chemistry in aragonite-to-calcite transition analysis. The aragonite-to-calcite transition is not progressive in some aragonite stalagmites, and this may be due to pore water between crystals and infiltration water from the surface of the stalagmite. This is very important for crystallography and physical chemistry research in the aragonite-to-calcite transition section.
-
[1] Lamb H H. The early medieval warm epoch and its sequel[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,1965,1:13-37. [2] Mann M E,Zhang Zhihua,Rutherford S,et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly[J]. Science,2009,326 (5957): 1256-1260. [3] Mann M E. Little Ice Age. In MacCracken M C & Perry J S. Encyclopedia of Global Environmental Change[M],Volume 1,The Earth system: physical and chemical dimensions of global environmental change. John Wiley & Sons. 2002,1-6. [4] 刘禹,安芷生,Linderholm H W,等. 青藏高原中东部过去2485年以来温度变化的树轮记录[J]. 中国科学(D辑),2009,39 (2): 166-176. [5] Shao Xuemei,Wang Shuzhi,Zhu Haifeng,et al. A 3585-year ring-width dating chronology of Qilian Juniper from the northeastern Qinghai-Tibetan Plateau[J]. IAWA Journal,2009,30 (4): 379-394. [6] Chu Guoqiang,Sun Qing,Wang Xiaohua,et al. A 1600 year multiproxy record of paleoclimatic change from varved sediments in Lake Xiaolongwan,northeastern China[J]. Journal of Geophysical Research,2009,114,D22108,doi: 10.1029/2009JD012077. [7] Xu Deke,Lu Houyuan,Chu Guoqiang,et al. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record[J]. Nature Scientific Reports,2014,4,doi: 10.1038/srep03611. [8] Yu Ke-Fu,Zhao Jianxin,Collerson K D,et al. Storm cycles in the last millennium recorded in Yongshu Reef,southern South China Sea[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2004,210 (1): 89-100. [9] Tan Ming,Liu Tungsheng,Hou Juzhi,et al. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature[J]. Geophysical Research Letter,2003,30 (12),1617,doi: 10.1029/2003GL017352. [10] Zhang Pingzhong,Cheng Hai,Edwards R L,et al. A test of climate,sun,and culture relationships from an 1810-year Chinese cave record[J]. Science,2008,322 (5903): 940-942. [11] 张德二,主编. 中国三千年气象记录总集[M]. 南京: 凤凰出版社,江苏教育出版社联合出版,2004. [12] 中央气象局气象科学研究院. 中国近五百年旱涝分布图集[M]. 北京: 地图出版社,1981. [13] 张德二,李小泉,梁有叶. 《中国近五百年旱涝分布图集》的再续补(1993~2000年)[J]. 应用气象学报,2003,14 (3): 379-384. [14] Shen Chuanchou,Lin Ke,Duan Wuhui,et al. Testing the annual nature of speleothem banding[J]. Nature Scientific Reports,2013,3,doi: 10.1038/srep02633. [15] Hopley P J,Marshall J D,Latham A G. Speleothem preservation and diagenesis in South African Hominin Sites: implications for paleoenvironments and geochronology[J]. Geoarchaeology,2009,24 (5): 519-547. [16] Li Tingyong,Shen Chuanchou,Li Hong-Chun,et al. Oxygen and carbon isotopic systematics of aragonite speleothems and water in Furong Cave,Chongqing,China[J]. Geochimica et Cosmochimica Acta,2011,75 (15): 4140-4156. [17] Cosford J,Qing Hairuo,Eglington B. East Asian monsoon variability since the Mid-Holocene recorded in a high-resolution,absolute-dated aragonite speleothem from eastern China[J]. Earth and Planetary Science Letters,2008,275 (3-4): 296-307. [18] Zhang Huiling,Yu Kefu,Zhao Jianxin,et al. East Asian summer monsoon variations in the past 12.5 ka: high-resolution δ18O record from a precisely dated aragonite stalagmite in central China[J]. Journal of Asian Earth Sciences,2013,73: 162-175. [19] Yancheva G,Nowaczyk N R,Mingram J,et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature,2007,445: 74-77. [20] 李偏,张茂恒,孔兴功,等. 近2000年来东亚夏季风石笋记录及与历史变迁的关系[J]. 海洋地质与第四纪地质,2010,30 (4): 201-208. [21] Hodell D A,Curtls J H,Brenner M. Possible role of climate in the collapse of classic Maya civilization[J]. Nature,1995,375: 391-394. [22] Curtis J H,Hodell D A,Brenner M. Climate variability on the Yucatan peninsula (Mexico) during the past 3500 years,and implications for Maya cultural evolution[J]. Quaternary Research,1996,46 (1): 37-47. [23] Hodell D A,Brenner M,Curtis J H,et al. Solar forcing of drought frequency in the Maya lowlands[J]. Science,2001,292 (5520): 1367-1370. [24] Haug G H,Günther D,Peterson L C,et al. Climate and the collapse of Maya civilization[J]. Science,2003,299 (5613): 1731-1735. [25] Webster J W,Brook G A,Railsback L B,et al. Stalagmite evidence from Belize indicating significant droughts at the time of preclassic abandonment,the Maya hiatus,and the classic Maya collapse[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2007,250 (1-4): 1-17. [26] Medina-Elizalde M,Burns S J,Lea D W,et al. High resolution stalagmite climate record from Yucatán peninsula spanning the Maya terminal classic period[J]. Earth and Planetary Science Letters,2010,298 (1-2): 255-262. [27] Medina-Elizalde M,Rohling E J. Collapse of classic Maya civilization related to modest reduction in precipitation[J]. Science,2012,335 (6071): 956-959. [28] Kennett D J,Breitenbach S F M,Aquino V V,et al. Development and disintegration of Maya political systems in response to climate change[J]. Science,2012,338 (6108): 788-791. [29] Lachniet M S,Bernal J P,Asmerom Y,et al. A 2400 yr Mesoamerican rainfall reconstruction links climate and cultural change[J]. Geology,2012,40 (3): 259-262. [30] Wang Y J,Cheng H,Edwards R L,et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu cave,China[J]. Science,2001,294 (5550): 2345-2348. [31] Yuan Daoxian,Cheng Hai,Edwards R L,et al. Timing,duration,and transitions of the last interglacial Asian monsoon[J]. Science,2004,304 (5670): 575-578. [32] Wang Yongjin,Cheng Hai,Edwards R L,et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years[J]. Nature,2008,451: 1090-1093. [33] Dong Jinguo,Wang Yongjin,Cheng Hai,et al. A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia,central China[J]. Holocene,2010,20 (2): 257-264. [34] Tan Liangcheng,Cai Yanjun,Cheng Hai,et al. Summer monsoon precipitation variations in central China over the past 750 years derived from a high-resolution absolute-dated stalagmite[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2009,280 (3-4): 432-439. [35] Yin J-J,Yuan D-X,Li H-C,et al. Variation in the Asian monsoon intensity and dry-wet condition since the Little Ice Age in central China revealed by an aragonite stalagmite[J]. Climate of the past,2014,10: 1803-1816. [36] Cook E R Anchukaitis K J,Buckley B M,et al. Asian monsoon failure and megadrought during the last millennium[J]. Science,2010,328 (5977): 486-489. [37] Zhang De’er. Severe drought events as revealed in the climate records of China and their temperature situations over the last 1000 years[J]. Acta meteorologica Sinica,2005,19 (4): 485-491. [38] Railsback L B,Brook G A,Chen Jian,et al. Environmental controls on the petrology of a late Holocene speleothem from Botswana with annual layers of aragonite and calcite[J]. Journal of Sedimentary Research,1994,A64 (1): 147-155. [39] Wassenburg J A,Immenhauser A,Richter D K,et al. Climate and cave control on Pleistocene/Holocene calcite-to-aragonite transitions in speleothems from Morocco: elemental and isotopic evidence[J]. Geochimica et Cosmochimica Acta,2012,92: 23-47. [40] Bertaux J,Sondag F,Santos R,et al. Paleoclimatic record of speleothems in a tropical region: study of laminated sequences from a Holocene stalagmite in Central-West Brazil[J]. Quaternary International,2002,89 (1): 3-16. [41] McMillan E A,Fairchild I J,Frisia S,et al. Annual trace element cycles in calcite-aragonite speleothems: evidence of drought in the western Mediterranean 1200-1100 yr BP[J]. Journal of Quaternary Science,2005,20 (5): 423-433. [42] Duan Wuhui,Cai Binggui,Tan Ming,et al. The growth mechanism of the aragonitic stalagmite laminae from Yunnan Xianren Cave,SW China revealed by cave monitoring[J]. Boreas,2012,41 (1): 113-123. [43] 林玉石,黄新耀,张美良,等. 中国南方发现大型文石笋[J]. 地学前缘,2007,14 (2): 236-241. [44] 翁金桃. 方解石和白云石的差异溶蚀作用[J]. 中国岩溶,1984,3 (1): 29-38. [45] Liu Zaihua,Dreybrodt W. Kinetics and rate-limiting mechanisms of dolomite dissolution at various CO2 partial pressures[J]. Science in China (Series B),2001,44 (5): 500-509. [46] Fairchild I J,Smith C L,Baker A,et al. Modification and preservation of environmental signals in speleothems[J]. Earth-Science Reviews,2006,75 (1-4): 105-153. [47] Frisia S,Borsato A,Fairchild I J,et al. Aragonite-calcite relationships in speleothems (Grotte De Clamouse,France): environment,fabrics,and carbonate geochemistry[J]. Journal of Sedimentary Research,2002,72 (5): 687-699. [48] Ortega R,Maire R,Devès G,et al. High-resolution mapping of uranium and other trace elements in recrystallized aragonite-calcite speleothems from caves in the Pyrenees (France): implication for U-series dating[J]. Earth and Planetary Science Letters,2005,237 (3-4): 911-923. [49] Fairchild I J,Baker A. Speleothem science: from process to past environments[M]. Wiley-Blackwell,2012,223-224. [50] De Choudens-Sánchez V,Gonzlez L A. Calcite and aragonite precipitation under controlled instantaneous supersaturation: elucidating the role of CaCO3 saturation state and Mg/Ca ratio on calcium carbonate polymorphism[J]. Journal of Sedimentary Research,2009,79 (6): 363-376. [51] Fairchild I J,Borsato A,Tooth A F,et al. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records[J]. Chemical Geology,2000,166 (3-4): 255-269. [52] Wang Yongjin,Cheng Hai,Edwards R L,et al. The Holocene Asian monsoon: links to solar changes and North Atlantic climate[J]. Science,2005,308 (5723): 854-857. [53] 周根陶,郑永飞. 碳酸钙-水体系氧同位素平衡及稳态分馏的低温实验研究[J]. 矿物岩石地球化学通报,2001,20 (4): 468-471. [54] Lachniet M S,Bernal J P,Asmerom Y,et al. Uranium loss and aragonite-calcite age discordance in a calcitized aragonite stalagmite[J]. Quaternary Geochronology,2012,14: 26-37. [55] Zhang Ren,Schwarcz H P,Ford D C,et al. Paleoclimate variations from 0 to 12.3 ka BP inferred from three coeval calcite and aragonite speleothems from Marengo Cave,Indiana,USA[C]. 2007 GSA Denver Annual Meeting (28–31 October 2007),2007,39 (6): 582. [56] Kim S-T,O’Neil J R,Hillaire-Marcel C,et al. Oxygen isotope fraction between synthetic aragonite and water: influence of temperature and Mg2+ concentration[J]. Geochimica et Cosmochimica Acta,2007,71 (19): 4704-4715. [57] 刘国钧,王徽枢,陈扬杰,等编. 矿物学[M]. 徐州: 中国矿业大学出版社,1989,248-252. [58] Folk R L. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity[J]. Journal of Sedimentary Petrology,1974,44 (1): 40-53. [59] Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science,1987,287 (5): 401-428. [60] Sheppard S M F,Schwarcz H P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite[J]. Contributions to Mineralogy and Petrology,1970,26 (3): 161-198. [61] O’Neil J R,Epstein S. Oxygen isotope fractionation in the system dolomite-calcite-carbon dioxide[J]. Science,1966,152 (3719): 198-201. [62] Galy A,Bar-Matthews M,Halicz L,et al. Mg isotopic composition of carbonate: insight from speleothem formation[J]. Earth and Planetary Science Letters,2002,201 (1): 105-115. [63] Riechelmann S,Buhl D,Schrder-Ritzrau A,et al. The magnesium isotope record of cave carbonate archives[J]. Climate of the past,2012,8: 1849-1867. [64] Busenberg E,Plummer L N. The kinetics of dissolution of dolomite in CO2-H2O systems at 1.5 to 65℃ and 0 to 1 atm Pco2[J]. American Journal of Science,1982,282: 45-78. [65] Chou Lei,Garrels R M,Wollast R. Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals[J]. Chemical Geology,1989,78 (3-4): 269-282. [66] Sp?tl C,Unterwurzacher M,Mangini A,et al. Carbonate speleothems in the dry,inneralpine Vinschgau valley,northernmost Italy: witnesses of changes in climate and hydrology since the last glacial maximum[J]. Journal of Sedimentary Research,2002,72 (6): 793-808. [67] Fairchild I J,Treble P C. Trace elements in speleothems as recorders of environmental change[J]. Quaternary Science Reviews,2009,28 (5-6): 449-468. [68] Ghosh P,Adkins J,Affek H,et al. 13C-18O bonds in carbonate minerals: a new kind of paleothermometer[J]. Geochimica et Cosmochimica Acta,2006,70 (6): 1439-1456. [69] Denniston R F,González L A,Asmerom Y,et al. Speleothem evidence for changes in Indian summer monsoon precipitation over the last ~2300 years[J]. Quaternary Research,2000,53 (2): 196-202. [70] Wassenburg J A,Immenhauser A,Richter D K,et al. Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic oscillation during the Medieval Warm Period[J]. Earth and Planetary Science Letters,2013,375: 291-302. [71] Zhang Haiwei,Cai Yanjun,Tan Liangcheng,et al. Stable isotope composition alteration produced by the aragonite-to-calcite transformation in speleothems and implications for paleoclimate reconstructions[J]. Sedimentary Geology,2014,309: 1-14. [72] 刘玉,林玉石,张美良,等. 湘西莲花洞石笋TIMS-U系年龄校正研究[J]. 西北地质,2008,41 (4): 124-133. [73] 林玉石,张美良,覃嘉铭,等. 论洞穴石笋结构构造转变[J]. 西北地质,2009,42 (3): 36-46.
点击查看大图
计量
- 文章访问数: 2103
- HTML浏览量: 295
- PDF下载量: 2108
- 被引次数: 0