基于时间序列分析法的岩溶泉水位预测
Prediction of karst spring water level based on the time series analysis method
-
摘要: 济南城区岩溶泉是当地主要的供水水源,查明泉水动态规律并科学合理的预测泉水位对于泉域岩溶水资源的开发利用和保护具有重要意义。本文首先应用时间序列分析法将趵突泉和黑虎泉自2012年5月2日至2018年10月31日的逐日水位数据分解为趋势项、周期项和随机项,分析其水位动态变化规律并建立水位预测模型,结果显示泉水位动态在该阶段无显著趋势性;但受降水的影响,泉水位动态变化呈现两个主要的周期,多年性变化(3.2年)和季节性变化;同时由于受到各种无规律干扰因素的影响,泉水位动态呈现随机波动的随机项。其次,利用2018年11月1日至2020年8月24日的逐日泉水位数据验证上述水位预测模型的预测精度,结果表明该模型运行合理,预测效果较好,具有一定的实用价值。最后利用该模型预测了2020年8月25日至2022年10月31日泉水位动态变化,为当地岩溶水资源开发和管理提供了依据。Abstract: Karst springs in Jinan City are the main water supply source,thus,it is of great significance to find out the dynamic law of spring water and reasonably and scientifically forecast the spring water level for the development,utilization and protection of karst water resources. In this paper,firstly,the daily water level data of Baotu Spring and Heihu Spring from May 2,2012 to October 31,2018 are decomposed into trend terms,periodic terms and random terms by applying with time series analysis method, the dynamic variation law of spring water level was analyzed and the water level forecast model was established. The results show that there is no obvious trend change of spring water level dynamics at this stage,however, under the influence of precipitation,there are two major periods of dynamic variation of spring water level ,perennial change(3.2 years)and seasonal change. At the same time,due to the influence of various irregular interference factors,the dynamic variation of spring water level presents a random term. Secondly,the prediction accuracy of the forecast model is verified by the daily spring water level data from November 1,2018 to August 24,2020,and the results show that the model runs reasonably and has good prediction effect, with certain practical value. Finally,the spring water level( from August 25,2020 to October 31,2022) is forecasted by above model,which provides a basis for the development and management of local karst water resources.
-
Key words:
- time series analysis method /
- water level forecast /
- karst spring
-
[1] 谢衷洁. 时间序列分析[M]. 北京大学出版社, 1990. [2] 杨位钦,顾岚. 时间序列分析与动态数据建模[M]. 北京理工大学出版社, 1988: [3] 王燕. 应用时间序列分析[M]. 北京. 中国人民大学出版社, 2005: [4] 陈葆仁, 洪再吉,汪福炘. 地下水动态及其预测[M]. 科学出版社, 1988: [5] 杨晓俊. 基于时间序列分析的柳林泉流量预测[J]. 人民黄河, 2017, 39(11): 99-102. [6] 赵杰, 卞玉梅,周晓君. 时间序列分析法在沈阳市地下水位动态预报中的应用[J]. 东北水利水电, 2007, 25(8): 31-35. [7] 李勇海. 时间序列分析法在延吉市地下水动态预测的应用[J]. 吉林地质, 2013, 32(3): 86-89. [8] White W B. Conceptual models for karstic aquifers[J]. Speleogenesis and Evolution of Karst Aquifers, 2003,1(1):11-16. [9] White W B. Karst hydrology recent developments and open questions[J]. Engineering Geology, 2002, 65: 85-105. [10] Bonacci O. Karst Springs Hydrographs as Indicators of Karst Aquifers[J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 1993, 38(1): 51-62. [11] Li G Q, Goldscheider N,Field M S. Modeling karst spring hydrograph recession based on head drop at sinkholes[J]. Journal of Hydrology, 2016, 542: 820-827. [12] 孙斌,邢立亭,彭玉明,等.济南十大泉群特征、形成模式及水循环差异性浅析[J].中国岩溶,2021,40(3):409-419. [13] 管清花,李福林,王爱芹,等.济南市岩溶泉域地下水化学特征与水环境演化[J].中国岩溶,2019,38(5):653-662. [14] 于翠翠.济南明水泉域岩溶地下水数值模拟及泉水水位动态预测[J].中国岩溶, 2017,36(4):533-540. [15] 李传谟. 济南岩溶水资源的分析与泉水名胜的保护[J]. 中国岩溶, 1985, 4(Z1): 37-45. [16] 王茂枚, 束龙仓, 季叶飞,等. 济南岩溶泉水流量衰减原因分析及动态模拟[J]. 中国岩溶, 2008, 27(1): 19-23. [17] 孙斌, 魏月, 赵振华, 等. 济南泉域岩溶地下水动态开采模型研究[J]. 山东国土资源, 2013, 29(9):65-68,84. [18] 迟光耀, 邢立亭, 主恒祥, 等. 大气降水与济南泉水动态变化的定量关系研究[J]. 地下水, 2017, 39(1):8-11. [19] 祁晓凡, 杨丽芝, 韩晔,等. 济南泉域地下水位动态及其对降雨响应的交叉小波分析[J]. 地球科学进展, 2012, 27(9): 969-978. [20] 祁晓凡, 王雨山, 杨丽芝, 等. 近50年济南岩溶泉域地下水位对降水响应的时滞差异[J]. 中国岩溶, 2016, 35(4): 384-393. [21] 马临刚,刘福臣. 济南岩溶含水系统滞迟效应分析[J]. 地下水, 2010, 32(4): 46-59. [22] 吴兴波, 牛景涛,牛景霞. 玉符河大型人工回灌不给地下水保泉试验研究[J]. 水电能源科学, 2003, 21(4): 53-55. [23] 徐光瑜, 刘福臣,张道震. 济南市四大泉群泉流量衰减规律研究[J]. 人民黄河, 2010, 32(12): 87-89. [24] 张保祥, 孙学东,刘青勇. 济南泉群断流的成因与对策探析[J]. 地下水, 2003, 25(1): 6-8. [25] Hall D,Fitzpatrick C S B. Spectral analysis of pressure variations during combined air and water backwash of rapid gravity filters[J]. Water Research, 1999, 33(17): 3666-3672. [26] Guo Y, Qin D, Sun J, et al. Huang J. Recharge of River Water to Karst Aquifer Determined by Hydrogeochemistry and Stable Isotopes[J]. Water, 2019,11(3):947. [27] Guo Y,Qin D J, Li L,et al. A Complicated Karst Spring System Identified by Karst Springs Using Water Level, Hydrogeochemical, and Isotopic Data in Jinan, China[J]. Water, 2019,11(5):947. [28] 李平, 卢文喜,杨忠平. 频谱分析法在吉林西部地下水动态预报中的应用[J]. 水文地质工程地质, 2005(4): 70-73. [29] 陆洪波. 北京市区浅层地下水位预测预报[J]. 工程勘察, 1997(1): 36-41.
点击查看大图
计量
- 文章访问数: 1530
- HTML浏览量: 593
- PDF下载量: 115
- 被引次数: 0